040217 KU Data Analysis on Organization and Personell (MA) (2022S)
Labels
Registration/Deregistration
- Registration is open from Mo 07.02.2022 09:00 to Mo 21.02.2022 23:59
- Registration is open from Th 24.02.2022 09:00 to Fr 25.02.2022 23:59
- Deregistration possible until Mo 14.03.2022 23:59
Details
Lecturers
Classes
MI 02.03.2022 11.30-14.45 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß (Bestätigt)
MI 09.03.2022 11.30-14.45 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß (Bestätigt)
MI 23.03.2022 11.30-14.45 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß (Bestätigt)
MI 30.03.2022 11.30-14.45 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß (Bestätigt)
MI 06.04.2022 09.45-11.15 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß (Bestätigt)
MI 06.04.2022 11.30-14.45 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß (Bestätigt)
MI 06.04.2022 15.00-16.30 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß (Bestätigt)
MI 06.04.2022 16.45-20.00 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß (Bestätigt)
DO 07.04.2022 09.45-11.15 Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Stock (Bestätigt)
DO 07.04.2022 11.30-13.00 Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Stock (Bestätigt)
DO 07.04.2022 13.15-14.45 Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Stock (Bestätigt)
DO 07.04.2022 15.00-16.30 Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Stock (Bestätigt)
DO 07.04.2022 16.45-18.15 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock (Bestätigt)
Information
Aims, contents and method of the course
Assessment and permitted materials
Make-up exams will not be given unless the student has a medical or other serious reason.
Students should hand in homework assignments before class on the day they are due. Assignments will be distributed in class or on line. each student must write up his or her answers separately.
Exam review is possible during regular semester time by appointment.
Minimum requirements and assessment criteria
Your final grade is determined by your performance on the quizzes, assignments, presentations, final essay and class participation.
Passing grades can generally not be earned by students who miss more than 20% of the total class-time.
Make-up exams will not be given unless the student has a medical or other serious reason.
Assignments will be distributed in class or on line. each student must write up his or her answers separately.
Examination topics
Reading list
– Chapters 1-8, 15, 17
Peter Kennedy „A guide to Econometrics“
– Chapters 1-12, 16, 17
Kohler/Kreuter „Data Analysis using Stata“
– Chapter 8 and 9
Goal: Upon completion of the course, students will be able to undertake regression analysis and inference on a variety of hypotheses involving cross-sectional and time series data.
This course introduces students to regression tools for analyzing data in economics, finance and related disciplines. Extensions include regression with discrete random variables, instrumental variables regression, quasi-experiments, and regression with time series data. The objective of the course is for the student to learn how to conduct – and how to critique – empirical studies in economics, finance and related fields. Accordingly, the emphasis of the course is on empirical applications. The mathematics of econometrics will be introduced only as needed and will not be a central focus.