Universität Wien FIND

Due to the COVID-19 pandemic, changes to courses and exams may be necessary at short notice (e.g. cancellation of on-site teaching and conversion to online exams). Register for courses/exams via u:space, find out about the current status on u:find and on the moodle learning platform.

Further information about on-site teaching can be found at https://studieren.univie.ac.at/en/info.

040242 VO Econometrics and Statistics (MA) (2018W)

4.00 ECTS (2.00 SWS), SPL 4 - Wirtschaftswissenschaften

Registration/Deregistration

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

Vorlesung entfällt am 31.10.2018

Wednesday 03.10. 16:45 - 18:15 Hörsaal 8 Oskar-Morgenstern-Platz 1 1.Stock
Wednesday 10.10. 16:45 - 18:15 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
Wednesday 17.10. 16:45 - 18:15 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
Wednesday 24.10. 16:45 - 18:15 Hörsaal 14 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 31.10. 16:45 - 18:15 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
Wednesday 07.11. 16:45 - 18:15 Hörsaal 14 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 14.11. 16:45 - 18:15 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
Wednesday 21.11. 16:45 - 18:15 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
Wednesday 28.11. 16:45 - 18:15 Hörsaal 14 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 05.12. 16:45 - 18:15 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
Wednesday 12.12. 16:45 - 18:15 Hörsaal 14 Oskar-Morgenstern-Platz 1 2.Stock
Wednesday 09.01. 16:45 - 18:15 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
Wednesday 16.01. 16:45 - 18:15 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
Wednesday 23.01. 16:45 - 18:15 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock

Information

Aims, contents and method of the course

Datamining and big data based on case studies

During the course we will learn and discuss concepts of data mining and big data using case studies.

The case studies will cover areas such as

. Customer Relationship Management
. Fraud Detection
. Revenue Management
. Market Research

The presented concepts of data-naming and big data will include i.a.

. Sampling
. Supervised und unsupervised learning
. Multiple Regression,
. Logistic Regression
. Statistical Analysis of Frequency Data
. Analysis of variance
. Time series analysis

Assessment and permitted materials

Final test at the end of the course, Written Exam

Minimum requirements and assessment criteria

To pass this course you have to attain min 50% of the total points.

Examination topics

Analyze a given Problem and sketch a solution with Datamining methods

Understand (= be able to read and Interpret) statistical model equations
and Datamining concepts

More Details about the exam will be given during the course.
Analyze a given Problem and sketch a solution with Datamining methods

Understand (= be able to read and Interpret) statistical model equations
and Datamining concepts

More Details about the exam will be given during the course.

Reading list

Werner Brannath, Andreas Futschik, Statistik für Wirtschaftswissenschaftler

Luis Torgo / "Data Mining with R Learning with Case Studies"

More literature will be announced during the course

Slides of the course, will be posted on Home page

Association in the course directory

Last modified: Mo 07.09.2020 15:29