040423 UK Enterprise Resource Planning Systems 1 (2019W)
Continuous assessment of course work
Labels
Zur endgültigen Lehrveranstaltung-Aufnahme ist ein pünktliches Erscheinen zur Vorbesprechung/1.LV-Einheit notwendig. Unentschuldigtes Fernbleiben führt zum Verlust des Lehrveranstaltung-Platzes.
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 16.09.2019 09:00 to Mo 23.09.2019 12:00
- Deregistration possible until Mo 14.10.2019 12:00
Details
max. 30 participants
Language: German
Lecturers
Classes (iCal) - next class is marked with N
- Saturday 09.11. 08:00 - 16:30 Hörsaal 17 Oskar-Morgenstern-Platz 1 2.Stock
- Saturday 23.11. 08:00 - 16:30 Hörsaal 7 Oskar-Morgenstern-Platz 1 1.Stock
- Saturday 30.11. 08:00 - 16:30 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Saturday 07.12. 08:00 - 16:30 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Saturday 14.12. 08:00 - 16:30 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Monday 16.12. 08:00 - 16:30 PC-Seminarraum 1 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Saturday 18.01. 08:00 - 13:00 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
- Friday 24.01. 09:45 - 11:15 Hörsaal 12 Oskar-Morgenstern-Platz 1 2.Stock
- Saturday 25.01. 08:00 - 09:30 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
- cooperation in class
- data exercise with presentation
- final test
- data exercise with presentation
- final test
Minimum requirements and assessment criteria
- data execise (50%), which is made up of
-- written summary (50%)
-- presentation of results (50%)- written examination (50%)
========================================
= 100%
+ possible bonus points (only in case of positive advance with a maximum of 5%)The course is classified and performed as "prüfungsimmanent" - insofar there is compulsory attendance! I.e. 2 missing units (lesson units), except for practical course session(s)! Further apologies are NOT accepted! If you stay away from the course more often, you will get graded with "Nicht genügend".grading scale:
100,00 % 88,00 % 1
87,99 % 75,00 % 2
74,99 % 63,00 % 3
62,99 % 50,00 % 4
49,99 % 0,00 % 5
-- written summary (50%)
-- presentation of results (50%)- written examination (50%)
========================================
= 100%
+ possible bonus points (only in case of positive advance with a maximum of 5%)The course is classified and performed as "prüfungsimmanent" - insofar there is compulsory attendance! I.e. 2 missing units (lesson units), except for practical course session(s)! Further apologies are NOT accepted! If you stay away from the course more often, you will get graded with "Nicht genügend".grading scale:
100,00 % 88,00 % 1
87,99 % 75,00 % 2
74,99 % 63,00 % 3
62,99 % 50,00 % 4
49,99 % 0,00 % 5
Examination topics
- lecture
- discussion
- data exercise
- presentation
- discussion
- data exercise
- presentation
Reading list
- Laudon et al. (2010): Wirtschaftsinformatik - Eine Einführung, 2. aktualisierte Auflage, Pearson Studium, München.
- Schubert, P., Wölfle, R., Dettling, W., Hrsg.(2003): E-Business Integration, München, Wien: Hanser.Lecture notes / material collection is available at the DKE Chair
(wiwi.dke.univie.ac.at)
- Schubert, P., Wölfle, R., Dettling, W., Hrsg.(2003): E-Business Integration, München, Wien: Hanser.Lecture notes / material collection is available at the DKE Chair
(wiwi.dke.univie.ac.at)
Association in the course directory
Last modified: Mo 07.09.2020 15:19
Whether on-premises architecture or modern cloud platforms - in the context of use, typically processes in which IT-systems are used, the resulting or acquired data, as well as the IT systems themselves, must be considered.Gaining a theoretical understanding of following concepts and their implication for business practice:
- IT-systems (kinds and usage)
- cloud computing (IaaS, PaaS, SaaS)
- integration
- data processing and data analysis
- basics of machine learning and artificial intelligence
in their interdependencies for modern companies and organisations also reflecting economic potentials and inherent risks.
In this course there will be worked on a practical machine learning example using Python notebooks.