Universität Wien

040649 UK Machine Learning (2013W)

4.00 ECTS (2.00 SWS), SPL 4 - Wirtschaftswissenschaften
Continuous assessment of course work

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

max. 50 participants
Language: German

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 07.10. 18:00 - 20:00 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Monday 14.10. 18:00 - 20:00 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Monday 21.10. 18:00 - 20:00 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Monday 28.10. 18:00 - 20:00 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Monday 04.11. 18:00 - 20:00 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Monday 11.11. 18:00 - 20:00 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Monday 18.11. 18:00 - 20:00 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Monday 25.11. 18:00 - 20:00 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Monday 02.12. 18:00 - 20:00 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Monday 09.12. 18:00 - 20:00 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Monday 16.12. 18:00 - 20:00 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Monday 13.01. 18:00 - 20:00 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Monday 20.01. 18:00 - 20:00 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Friday 24.01. 17:00 - 18:30 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Monday 27.01. 18:00 - 20:00 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock
  • Monday 24.02. 17:00 - 19:00 Seminarraum 6 Oskar-Morgenstern-Platz 1 1.Stock

Information

Aims, contents and method of the course

This course is about methods and algorithms for an automatic search
for patterns in electronically stored data. Useful patterns allows
us to make non-trivial predictions of new data. Try to derive your
own understanding of machine learning by using the following
definition: "Things learn when they change they behavior that makes
them perform better in the future" [1].

Assessment and permitted materials

Minimum requirements and assessment criteria

The course will introduce practical machine learning tools and techniques with applications to data mining using commercial, scientific, and web data sets. Techniques to be covered include:

- decision trees

- learning rules

- neural networks

- Bayesian classification

- support vector machines

- association rules.

Examination topics

Reading list

[1] Data Mining: Practical Machine Learning Tools and Techniques
(Third Edition, 2011), Ian H. Witten, Eibe Frank, Mark A. Hall
http://www.cs.waikato.ac.nz/~ml/weka/book.html

[2] Introduction to Machine Learning
Ethem Alpaydin
The MIT Press, October 2004, ISBN 0-262-01211-1

Association in the course directory

Last modified: Mo 07.09.2020 15:29