Universität Wien FIND

Due to the COVID-19 pandemic, changes to courses and exams may be necessary at short notice (e.g. cancellation of on-site teaching and conversion to online exams). Register for courses/exams via u:space, find out about the current status on u:find and on the moodle learning platform.

Further information about on-site teaching can be found at https://studieren.univie.ac.at/en/info.

040649 UK Machine Learning (2019W)

4.00 ECTS (2.00 SWS), SPL 4 - Wirtschaftswissenschaften
Continuous assessment of course work

Registration/Deregistration

Details

max. 30 participants
Language: English

Lecturers

Classes (iCal) - next class is marked with N

Thursday 03.10. 16:45 - 18:15 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
Thursday 10.10. 16:45 - 18:15 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
Thursday 17.10. 16:45 - 18:15 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
Thursday 24.10. 16:45 - 18:15 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
Thursday 31.10. 16:45 - 18:15 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
Thursday 07.11. 16:45 - 18:15 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
Thursday 14.11. 16:45 - 18:15 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
Thursday 21.11. 16:45 - 18:15 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
Thursday 28.11. 16:45 - 18:15 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
Thursday 05.12. 16:45 - 18:15 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
Thursday 12.12. 16:45 - 18:15 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
Thursday 09.01. 16:45 - 18:15 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
Thursday 16.01. 16:45 - 18:15 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
Thursday 23.01. 16:45 - 18:15 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock
Thursday 30.01. 16:45 - 18:15 Hörsaal 10 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

Basic knowledge about machine learning

Contents:
- Recursive estimation and stochastic gradient methods
- Linear classifier and support vector machines
- Neural Networks
- Bayesian Networks
- Clustering and the EM-Algorithm
- Hidden Merkur Models - Baum/Welch and Viterbi-Algorithms

Assessment and permitted materials

Solving problems taken from the following book: Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning. Springer.

Minimum requirements and assessment criteria

Examination topics

All topics covered in class.

Reading list

Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning. Springer.

Association in the course directory

Last modified: Mo 07.09.2020 15:19