Universität Wien FIND
Warning! The directory is not yet complete and will be amended until the beginning of the term.

040690 UK Generalized Linear Model (2012S)

8.00 ECTS (4.00 SWS), SPL 4 - Wirtschaftswissenschaften
Continuous assessment of course work

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

max. 50 participants
Language: German

Lecturers

Classes (iCal) - next class is marked with N

Tuesday 06.03. 09:00 - 12:00 (ehem. Hörsaal DAC Universitätsstraße 5 Hochparterre)
Tuesday 13.03. 09:00 - 12:00 (ehem. Hörsaal DAC Universitätsstraße 5 Hochparterre)
Tuesday 20.03. 09:00 - 12:00 (ehem. Hörsaal DAC Universitätsstraße 5 Hochparterre)
Tuesday 27.03. 09:00 - 12:00 (ehem. Hörsaal DAC Universitätsstraße 5 Hochparterre)
Tuesday 17.04. 09:00 - 12:00 (ehem. Hörsaal DAC Universitätsstraße 5 Hochparterre)
Tuesday 24.04. 09:00 - 12:00 (ehem. Hörsaal DAC Universitätsstraße 5 Hochparterre)
Tuesday 08.05. 09:00 - 12:00 (ehem. Hörsaal DAC Universitätsstraße 5 Hochparterre)
Tuesday 15.05. 09:00 - 12:00 (ehem. Hörsaal DAC Universitätsstraße 5 Hochparterre)
Tuesday 22.05. 09:00 - 12:00 (ehem. Hörsaal DAC Universitätsstraße 5 Hochparterre)
Tuesday 05.06. 09:00 - 12:00 (ehem. Hörsaal DAC Universitätsstraße 5 Hochparterre)
Tuesday 12.06. 09:00 - 12:00 (ehem. Hörsaal DAC Universitätsstraße 5 Hochparterre)
Tuesday 19.06. 09:00 - 12:00 (ehem. Hörsaal DAC Universitätsstraße 5 Hochparterre)
Tuesday 26.06. 09:00 - 12:00 (ehem. Hörsaal DAC Universitätsstraße 5 Hochparterre)

Information

Aims, contents and method of the course

1. Piecewise Regression und Regression Trees /mh/
2. Logistic Regression /mh/
3. Log-Lineare Modelle /wg/
4. ANOVA and Mixed Models /wg/
Introduction into generalized linear models

Assessment and permitted materials

Attendance of course is obligatory (max 3 lectures absence)
In each block two exercises must be be uploaded to the platform according to the schedule
Final test at the end of semester
Gradues: 15% for exercises in each block, 40% final test

Minimum requirements and assessment criteria

Application oriented introduction into advanced statistical methods
Understanding statistical modeling in applications
Usíng R in advanced statistical modeling

Examination topics

Lecture combined with exercises
Handouts are available

Reading list

Agresti,A. (2002). Categorical Data Analysis. John Wiley & Sons.

Dobson, A.J. (2001). An Introduction to Generalized Linear Models, Second Edition. Chapman and Hall.

Fahrmeir, L., Kneib, T. und Lang, S. (2007). Regression: Modelle, Methoden und Anwendungen, Springer.

Faraway, J.J. (2005). Linear models with R, Chapman & Hall.

Faraway, J.J. (2005). Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models, Chapman & Hall.

Fox, J.(2008). Applied Regression Analysis and Generalized Linear Models, Sage.

Hosmer, D.W. & S. Lemeshow (2000). Applied Logistic Regression, Second Edition. John Wiley & Sons.

Kleinbaum, D. G. (1994): Logistic Regression. A Self-Learning Text. Springer.

Association in the course directory

Last modified: Mo 07.09.2020 15:29