Universität Wien FIND
Warning! The directory is not yet complete and will be amended until the beginning of the term.

040690 UK Generalized Linear Model (2017S)

8.00 ECTS (4.00 SWS), SPL 4 - Wirtschaftswissenschaften
Continuous assessment of course work

Absolvieren Studierende des Bac Statistik (Version 2014) diesen Kurs, so wird beim Abschluss der Überhang an ECTS dem Wahlfach zugeordnet.

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

max. 40 participants
Language: German

Lecturers

Classes (iCal) - next class is marked with N

Tuesday 07.03. 09:45 - 13:00 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
Tuesday 14.03. 09:45 - 13:00 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
Tuesday 21.03. 09:45 - 13:00 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
Tuesday 28.03. 09:45 - 13:00 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
Tuesday 04.04. 09:45 - 13:00 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
Tuesday 25.04. 09:45 - 13:00 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
Tuesday 02.05. 09:45 - 13:00 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
Tuesday 09.05. 09:45 - 13:00 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
Tuesday 16.05. 09:45 - 13:00 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
Tuesday 23.05. 09:45 - 13:00 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
Tuesday 30.05. 09:45 - 13:00 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
Tuesday 13.06. 09:45 - 13:00 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
Tuesday 20.06. 09:45 - 13:00 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
Tuesday 27.06. 09:45 - 13:00 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

Goals:
Students learn advanced statistical methods, know how to use this methods in statistical modelling and apply this methods in statistical practice.

Contents:
Block I: Piecewise Regression und Regression Trees
Block II: Logistic Regression
Block III: Analysis of Variance und Experimental Design,
Block IV Random effect models
Block V: Loglineare models and introduction to generalized linearer models

Methods:
Lecture combined with practical exercises

Assessment and permitted materials

Attendance of the lectures (at most 3 missing)
In each block 2 exercises have to be solved and presented in accordance with the time schedule.
There are two tests: one for block I and II and one for blocks III - V

Minimum requirements and assessment criteria

Weights of the different assignments:
15% Exercises Block I
15% Exercises Block II
8% Exercises Block III
7% Exercises Block IV
15% Exercises Block V
20% First test
20% Second test

Examination topics

Topics presented in the lectures

Reading list

Agresti,A. (2002). Categorical Data Analysis. John Wiley & Sons.
Dobson, A.J. (2001). An Introduction to Generalized Linear Models, Second Edition. Chapman and Hall.
Fahrmeir, L., Kneib, T. und Lang, S. (2007). Regression: Modelle, Methoden und Anwendungen, Springer.
Faraway, J.J. (2005). Linear models with R, Chapman & Hall.
Faraway, J.J. (2005). Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models, Chapman & Hall.
Fox, J.(2008). Applied Regression Analysis and Generalized Linear Models, Sage.
Hosmer, D.W. & S. Lemeshow (2000). Applied Logistic Regression, Second Edition. John Wiley & Sons.
Kleinbaum, D. G. (1994): Logistic Regression. A Self-Learning Text. Springer.
Nelder J.A. & P. McCullagh (1989). Generalized Linear Models, Second Edition. Chapman& Hall.

Association in the course directory

Last modified: Mo 07.09.2020 15:29