040690 UK Generalized Linear Model (2019S)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 11.02.2019 09:00 to We 20.02.2019 12:00
- Deregistration possible until Th 14.03.2019 23:59
Details
max. 40 participants
Language: German
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 05.03. 09:45 - 11:15 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 19.03. 09:45 - 11:15 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 26.03. 09:45 - 11:15 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 02.04. 09:45 - 11:15 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 09.04. 09:45 - 11:15 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 30.04. 09:45 - 11:15 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 07.05. 09:45 - 11:15 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 14.05. 09:45 - 11:15 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 21.05. 09:45 - 11:15 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 28.05. 09:45 - 11:15 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 04.06. 09:45 - 11:15 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 18.06. 09:45 - 11:15 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 25.06. 09:45 - 11:15 Seminarraum 14 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Attendance of the lectures (at most 3 missing)
In each block 2 exercises have to be solved and presented in accordance with the time schedule.
There are two tests: one for block I and II and one for blocks III - V
In each block 2 exercises have to be solved and presented in accordance with the time schedule.
There are two tests: one for block I and II and one for blocks III - V
Minimum requirements and assessment criteria
Weights of the different assignments:
15% Exercises Block I
15% Exercises Block II
8% Exercises Block III
7% Exercises Block IV
15% Exercises Block V
20% First test
20% Second test
15% Exercises Block I
15% Exercises Block II
8% Exercises Block III
7% Exercises Block IV
15% Exercises Block V
20% First test
20% Second test
Examination topics
Topics presented in the lectures
Reading list
Agresti,A. (2002). Categorical Data Analysis. John Wiley & Sons.
Dobson, A.J. (2001). An Introduction to Generalized Linear Models, Second Edition. Chapman and Hall.
Fahrmeir, L., Kneib, T. und Lang, S. (2007). Regression: Modelle, Methoden und Anwendungen, Springer.
Faraway, J.J. (2005). Linear models with R, Chapman & Hall.
Faraway, J.J. (2005). Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models, Chapman & Hall.
Fox, J.(2008). Applied Regression Analysis and Generalized Linear Models, Sage.
Hosmer, D.W. & S. Lemeshow (2000). Applied Logistic Regression, Second Edition. John Wiley & Sons.
Kleinbaum, D. G. (1994): Logistic Regression. A Self-Learning Text. Springer.
Nelder J.A. & P. McCullagh (1989). Generalized Linear Models, Second Edition. Chapman& Hall.
Dobson, A.J. (2001). An Introduction to Generalized Linear Models, Second Edition. Chapman and Hall.
Fahrmeir, L., Kneib, T. und Lang, S. (2007). Regression: Modelle, Methoden und Anwendungen, Springer.
Faraway, J.J. (2005). Linear models with R, Chapman & Hall.
Faraway, J.J. (2005). Extending the Linear Model with R: Generalized Linear, Mixed Effects and Nonparametric Regression Models, Chapman & Hall.
Fox, J.(2008). Applied Regression Analysis and Generalized Linear Models, Sage.
Hosmer, D.W. & S. Lemeshow (2000). Applied Logistic Regression, Second Edition. John Wiley & Sons.
Kleinbaum, D. G. (1994): Logistic Regression. A Self-Learning Text. Springer.
Nelder J.A. & P. McCullagh (1989). Generalized Linear Models, Second Edition. Chapman& Hall.
Association in the course directory
Last modified: Mo 07.09.2020 15:29
Students learn advanced statistical methods, know how to use this methods in statistical modelling and apply this methods in statistical practice.Contents:
Block I: Piecewise Regression und Regression Trees
Block II: Logistic Regression
Block III: Analysis of Variance und Experimental Design,
Block IV Random effect models
Block V: Loglineare models and introduction to generalized linearer modelsMethods:
Lecture combined with practical exercises