Universität Wien

040767 UK Decision Support (2018W)

4.00 ECTS (2.00 SWS), SPL 4 - Wirtschaftswissenschaften
Continuous assessment of course work

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

max. 35 participants
Language: German

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 01.10. 13:15 - 14:45 Hörsaal 5 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 08.10. 13:15 - 14:45 Hörsaal 5 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 15.10. 13:15 - 14:45 Hörsaal 5 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Thursday 18.10. 11:30 - 13:00 Hörsaal 8 Oskar-Morgenstern-Platz 1 1.Stock
  • Monday 22.10. 13:15 - 14:45 Hörsaal 5 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 29.10. 13:15 - 14:45 Hörsaal 5 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 05.11. 13:15 - 14:45 Hörsaal 5 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 12.11. 13:15 - 14:45 Hörsaal 5 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 19.11. 13:15 - 14:45 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 26.11. 13:15 - 14:45 Hörsaal 5 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 03.12. 13:15 - 14:45 Hörsaal 5 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 10.12. 13:15 - 14:45 Hörsaal 5 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 07.01. 13:15 - 14:45 Hörsaal 5 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 14.01. 13:15 - 14:45 Hörsaal 5 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 21.01. 13:15 - 14:45 Hörsaal 5 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Monday 28.01. 13:15 - 14:45 Hörsaal 14 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

This lecture provides an overview on formal methods for decision support. Basic methods and techniques from mathematical optimization such as linear programming (LP), non-linear programming (NLP), and integer programming (IP) are discussed.

Assessment and permitted materials

Written tests (midterm, endterm), homeworks whose solutions will be presented by students in class, as well as an (optional) project.
Mandatory attendance in the first lecture!

Minimum requirements and assessment criteria

Knowledge of basic methods from the covered areas as well as the ability to model and solve simplified real-world examples by means of mathematical programming.

Examination topics

Lecture notes and further content discussed in the lecture.

Reading list

Lecture notes (including additional references) as well as additional exercises will be provided via moodle.

Association in the course directory

Last modified: Mo 07.09.2020 15:29