040772 UK Complex Statistical Methods (2020W)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 14.09.2020 09:00 to We 23.09.2020 12:00
- Registration is open from Mo 28.09.2020 09:00 to We 30.09.2020 12:00
- Deregistration possible until Sa 31.10.2020 12:00
Details
max. 17 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 07.10. 15:00 - 16:30 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
- Wednesday 14.10. 15:00 - 16:30 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
- Wednesday 21.10. 15:00 - 16:30 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
- Wednesday 28.10. 15:00 - 16:30 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
- Wednesday 04.11. 15:00 - 16:30 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
- Wednesday 11.11. 15:00 - 16:30 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
- Wednesday 18.11. 15:00 - 16:30 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
- Wednesday 25.11. 15:00 - 16:30 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
- Wednesday 02.12. 15:00 - 16:30 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
- Wednesday 09.12. 15:00 - 16:30 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
- Wednesday 16.12. 15:00 - 16:30 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
- Wednesday 13.01. 15:00 - 16:30 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
- Wednesday 20.01. 15:00 - 16:30 Seminarraum 16 Oskar-Morgenstern-Platz 1 3.Stock
- Tuesday 26.01. 18:30 - 20:00 Hörsaal 14 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
There is an oral exam and three programming exercises to each topic that should be solved in presence.
Minimum requirements and assessment criteria
The final grade will be weighted as follows:
25% oral exam
25% each programming exercise
25% oral exam
25% each programming exercise
Examination topics
All topics covered in the lecture.
Reading list
Tsybakov. A. (2009) Introduction to nonparametric estimation
Fan, J. and Gijbels, I. (1996) Local polynomial modelling and its applications.
Randall L. Eubank. (1999) Nonparametric regression and spline smoothing.
Fan, J. and Gijbels, I. (1996) Local polynomial modelling and its applications.
Randall L. Eubank. (1999) Nonparametric regression and spline smoothing.
Association in the course directory
Last modified: Mo 28.09.2020 15:27
Get acquainted with concepts of nonparametric density estimation and regression: methodology and applications.
Implementation of methods in statistical software is the part of the lecture.Contents:
1. Histograms and kernel density estimators
2. Local polynomial estimators
3. Spline estimatorsMethods:
Lecture with exercise sessions.
Lecture notes and data will be available online.
Students are supposed to code in statistical software.