Universität Wien

040894 KU LP Modeling I (MA) (2024W)

4.00 ECTS (2.00 SWS), SPL 4 - Wirtschaftswissenschaften
Continuous assessment of course work

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

max. 30 participants
Language: English

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 07.10. 13:15 - 16:30 PC-Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Untergeschoß
  • Monday 14.10. 13:15 - 16:30 PC-Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Untergeschoß
  • Monday 21.10. 13:15 - 16:30 PC-Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Untergeschoß
  • Monday 28.10. 13:15 - 14:45 Hörsaal 7 Oskar-Morgenstern-Platz 1 1.Stock
  • Tuesday 29.10. 13:15 - 14:45 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
  • Tuesday 29.10. 15:00 - 16:30 PC-Seminarraum 5 Oskar-Morgenstern-Platz 1 1.Untergeschoß
  • Monday 04.11. 13:15 - 16:30 PC-Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Untergeschoß
  • Monday 11.11. 13:15 - 16:30 PC-Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Untergeschoß
  • Monday 18.11. 13:15 - 16:30 PC-Seminarraum 3 Oskar-Morgenstern-Platz 1 1.Untergeschoß
  • Wednesday 20.11. 13:15 - 14:45 Hörsaal 6 Oskar-Morgenstern-Platz 1 1.Stock

Information

Aims, contents and method of the course

The course introduces students to modeling techniques in the area of linear programming. To gain a better understanding of the underlying problems and solution techniques, we will discuss the following topics:

Introduction to Linear Programming
Introduction to Mosel / XPress-MP
Simplex Method
Sensitivity Analysis & its economic interpretation
Introduction to (mixed) integer programming
Modeling with binary variables

New content will be provided weekly in class. Homework examples have to be solved individually. An introductory lesson (Oct. 21st) will be held for implementing simple LP models in Mosel. There will be an additional tutorial (Oct. 29th), where students can practice their implementation skills under supervision in the PC lab (attendance not mandatory).

Assessment and permitted materials

20 % homework
40 % midterm exam (closed book, on-site) (date October, 28th, 2024)
40 % final exam (closed book, on-site) (date November, 20th, 2024)

Minimum requirements and assessment criteria

In order to pass the course (minimum requirement) students have to achieve at least 50% in total.

The other grades are distributed as follows:
4: 50% to <63%
3: 63% to <75%
2: 75% to <87%
1: 87% to 100%

Examination topics

Students are expected to be able to understand, formulate and solve a variety of LP models in the exam and implement them using Mosel / XpressMP. Slides will be available in Moodle.

Content of the exams:
- Formulation of LP models
- Graphical solution method
- The Simplex algorithm
- Duality
- Sensitivity analysis
- Mosel / XPress
- Branch-and-bound
- Modeling with binary variables
- Formulation of specific objectives

The final exam will additionally include parts where students need to show the implementation skills acquired during lessons and homework (e.g. how the implementation of a certain constraint would look like, how one has to declare variables, etc.) and by explaining a given Mosel code and/or finding errors in it.

Reading list

* Bertsimas, D., & Tsitsiklis, J. N. (1997). Introduction to linear optimization. Athena Scientific.
* Papadimitriou, C. H., & Steiglitz, K. (1998). Combinatorial Optimization: Algorithms and Complexity. Dover Publications.
* Guéret, C., Prins, C., & Sevaux, M. (2002). Applications of optimisation with Xpress-MP. Dash optimization.
* Hillier, F. S., & Lieberman, G. J. Introduction to Operations Research. McGraw-Hill.
* Anderson, D. R., Sweeney, D. J. An introduction to management science: quantitative approaches to decision making. South-Western.

Association in the course directory

Last modified: Mo 02.09.2024 14:45