Universität Wien

040971 UK Computational Statistics (2022S)

4.00 ECTS (2.00 SWS), SPL 4 - Wirtschaftswissenschaften
Continuous assessment of course work
REMOTE

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

max. 65 participants
Language: English

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 07.03. 15:00 - 16:30 Digital
  • Monday 07.03. 18:30 - 20:00 Digital
  • Monday 14.03. 15:00 - 16:30 Digital
  • Monday 14.03. 18:30 - 20:00 Digital
  • Monday 21.03. 15:00 - 16:30 Digital
  • Monday 21.03. 18:30 - 20:00 Digital
  • Monday 28.03. 15:00 - 16:30 Digital
  • Monday 28.03. 18:30 - 20:00 Digital
  • Monday 04.04. 15:00 - 16:30 Digital
  • Monday 04.04. 18:30 - 20:00 Digital
  • Monday 25.04. 15:00 - 16:30 Digital
  • Monday 25.04. 18:30 - 20:00 Digital
  • Monday 02.05. 15:00 - 16:30 Digital
  • Monday 02.05. 18:30 - 20:00 Digital
  • Monday 09.05. 15:00 - 16:30 Digital
  • Monday 09.05. 18:30 - 20:00 Digital
  • Monday 16.05. 15:00 - 16:30 Digital
  • Monday 16.05. 18:30 - 20:00 Digital
  • Monday 23.05. 15:00 - 16:30 Digital
  • Monday 23.05. 18:30 - 20:00 Digital
  • Monday 30.05. 15:00 - 16:30 Digital
  • Monday 30.05. 18:30 - 20:00 Digital
  • Monday 13.06. 15:00 - 16:30 Digital
  • Monday 13.06. 18:30 - 20:00 Digital
  • Monday 20.06. 15:00 - 16:30 Digital
  • Monday 20.06. 18:30 - 20:00 Digital
  • Monday 27.06. 15:00 - 16:30 Digital
  • Monday 27.06. 18:30 - 20:00 Digital

Information

Aims, contents and method of the course

Objectives:

In this course, students will
- get acquainted with code documentation
- use R for data visualisation and analysis
- draft detailed problem reports
- understand the underlying methods
- tailor R-solutions to specific needs
- learn fundamental concepts in statistical computing

Contents:

1. Intro to R
2. Data Processing
3. Hypothesis Testing
4. Regression Analysis
5. Dimension Reduction
6. Simulation
7. Model Selection

Methods:

Completely online via Moodle.
Students will participate in coding with R.

Assessment and permitted materials

Submit three detailed problem reports.

Minimum requirements and assessment criteria

Each report contributes a third to the final grade.
To pass, half of the total points have to be earned.

Examination topics

Contents of the topics covered.

Reading list

Lecture notes.

Association in the course directory

Last modified: Th 11.05.2023 11:27