040971 UK Computational Statistics (2024S)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 12.02.2024 09:00 to We 21.02.2024 12:00
- Deregistration possible until Th 14.03.2024 23:59
Details
max. 65 participants
Language: German, English
Lecturers
Classes (iCal) - next class is marked with N
ACHTUNG: Anwesenheit in der ersten Übungseinheit ist für die Teilnahme unbedingt erforderlich!
Eigenen Laptop mitbringen!
- Monday 04.03. 11:30 - 13:00 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 11.03. 11:30 - 13:00 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 18.03. 11:30 - 13:00 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 08.04. 11:30 - 13:00 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 15.04. 11:30 - 13:00 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 22.04. 11:30 - 13:00 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 29.04. 11:30 - 13:00 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 06.05. 11:30 - 13:00 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 13.05. 11:30 - 13:00 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 27.05. 11:30 - 13:00 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 03.06. 11:30 - 13:00 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 10.06. 11:30 - 13:00 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 17.06. 11:30 - 13:00 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 24.06. 11:30 - 13:00 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
4 Übungseinheiten + 4 Quizzes pro Semester.
Es sind jeweils 10 Punkte zu erreichen.
Es sind jeweils 10 Punkte zu erreichen.
Minimum requirements and assessment criteria
Die Gesamtnote ergibt sich wie folgt:
80 - 71P: 1
70 - 61P: 2
60 - 51P: 3
50 - 41P: 4
0 - 40P : 5
80 - 71P: 1
70 - 61P: 2
60 - 51P: 3
50 - 41P: 4
0 - 40P : 5
Examination topics
Vorlesungsstoff
Reading list
- Galea, A. and Capelo, L. (2018): 'Applied Deep Learning with Python', Packt Publishing, Birmingham.
- Chollet, F. (2018): 'Deep Learning mit Python und Keras', mitp Verlag, Frechen.
- Chollet, F. (2018): 'Deep Learning mit Python und Keras', mitp Verlag, Frechen.
Association in the course directory
Last modified: We 31.07.2024 11:25
- Statistische Datenanalyse in Python mit Blick auf Deep-Learning.
- Vorkenntnisee: Bachelor-Statistik im 4.Semester, insbesondere Analysis, Lineare Algebra, Wahrscheinlichkeitsrechnung, Inferenzstatistik, Lineare Modelle, Statistisches Programmieren. Keine Python Vorkenntnisse notwendig aber R hilfreich.Inhalte:
- Python/Jupyter basics (grundlegende Sprachkonzepte im Vergleich zu R)
- Tensoralgebra und einfache Montecarlo Methoden (NumPy)
- Datenverarbeitung, lineare und logistische Regression (Pandas, scikit-learn)
- Visualisierung (Matplotlib, Seaborn)
- Grundlagen der Computernumerik (Newton, Matrix Inversion, EM, GD, SGD)
- Einführung in Deep-Learning (TensorFlow, Keras)