Warning! The directory is not yet complete and will be amended until the beginning of the term.
050035 VU Machine Learning (2012S)
Continuous assessment of course work
Labels
Details
max. 25 participants
Language: German
Lecturers
Classes (iCal) - next class is marked with N
- Friday 09.03. 16:30 - 18:00 (ehem. Hörsaal DAC Universitätsstraße 5 Hochparterre)
- Friday 16.03. 16:30 - 18:00 (ehem. Hörsaal DAC Universitätsstraße 5 Hochparterre)
- Friday 23.03. 16:30 - 18:00 (ehem. Hörsaal DAC Universitätsstraße 5 Hochparterre)
- Friday 30.03. 16:30 - 18:00 (ehem. Hörsaal DAC Universitätsstraße 5 Hochparterre)
- Friday 20.04. 16:30 - 18:00 (ehem. Hörsaal DAC Universitätsstraße 5 Hochparterre)
- Friday 27.04. 16:30 - 18:00 (ehem. Hörsaal DAC Universitätsstraße 5 Hochparterre)
- Friday 04.05. 16:30 - 18:00 (ehem. Hörsaal DAC Universitätsstraße 5 Hochparterre)
- Friday 11.05. 16:30 - 18:00 (ehem. Hörsaal DAC Universitätsstraße 5 Hochparterre)
- Friday 18.05. 16:30 - 18:00 (ehem. Hörsaal DAC Universitätsstraße 5 Hochparterre)
- Friday 25.05. 16:30 - 18:00 (ehem. Hörsaal DAC Universitätsstraße 5 Hochparterre)
- Friday 01.06. 16:30 - 18:00 (ehem. Hörsaal DAC Universitätsstraße 5 Hochparterre)
- Friday 08.06. 16:30 - 18:00 (ehem. Hörsaal DAC Universitätsstraße 5 Hochparterre)
- Friday 15.06. 16:30 - 18:00 (ehem. Hörsaal DAC Universitätsstraße 5 Hochparterre)
- Friday 22.06. 16:30 - 18:00 (ehem. Hörsaal DAC Universitätsstraße 5 Hochparterre)
- Friday 29.06. 16:30 - 18:00 (ehem. Hörsaal DAC Universitätsstraße 5 Hochparterre)
Information
Aims, contents and method of the course
Basic methods in machine learning: Supervised Learning (classification), Unsupervised Learning (Cluster analysis), Incomplete Data Problems (EM-Algorithm), Assoziation rules, Page Rank,
Assessment and permitted materials
Attandence of lectures, solving and presentation of practical exercises (50%), final test (50%)
Minimum requirements and assessment criteria
getting familiar with basic ideas in machine learning and application of the methods wit R and Weka.
Examination topics
Lectures with parctical exercises, mainly by using R and Weka.
Reading list
X. Wu, V. Kumar: The Top Ten Algorithms in Data Mining, Chapman&Hall/CRC Data Mining and Knowledge Discovery Series, 2009
Hastie-Tibshirani-Friedman: The Elements of Statistical Learning, Springer 2009
Cherkassky-Mulier: Learning from Data, IEEE Press, Wiley 2007
S. Marsland: Machine Learning - An Algorithmic Perpective. CRC Press 2009
Hastie-Tibshirani-Friedman: The Elements of Statistical Learning, Springer 2009
Cherkassky-Mulier: Learning from Data, IEEE Press, Wiley 2007
S. Marsland: Machine Learning - An Algorithmic Perpective. CRC Press 2009
Association in the course directory
Last modified: Mo 07.09.2020 15:29