Universität Wien FIND

Due to the COVID-19 pandemic, changes to courses and exams may be necessary at short notice (e.g. cancellation of on-site teaching and conversion to online exams). Register for courses/exams via u:space, find out about the current status on u:find and on the moodle learning platform.

Further information about on-site teaching can be found at https://studieren.univie.ac.at/en/info.

Warning! The directory is not yet complete and will be amended until the beginning of the term.

050035 VU Machine Learning (2013S)

Continuous assessment of course work

Registration/Deregistration

Details

max. 25 participants
Language: German

Lecturers

Classes (iCal) - next class is marked with N

Friday 01.03. 16:45 - 18:15 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Friday 08.03. 16:45 - 18:15 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Friday 15.03. 16:45 - 18:15 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Friday 22.03. 16:45 - 18:15 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Friday 12.04. 16:45 - 18:15 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Friday 19.04. 16:45 - 18:15 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Friday 26.04. 16:45 - 18:15 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Friday 03.05. 16:45 - 18:15 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Friday 10.05. 16:45 - 18:15 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Friday 17.05. 16:45 - 18:15 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Friday 24.05. 16:45 - 18:15 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Friday 31.05. 16:45 - 18:15 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Friday 07.06. 16:45 - 18:15 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Friday 14.06. 16:45 - 18:15 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Friday 21.06. 16:45 - 18:15 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Friday 28.06. 16:45 - 18:15 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG

Information

Aims, contents and method of the course

Basic methods in machine learning: Supervised Learning (classification): Naive Bayes, Classification Trees, Combination Methods, Support Vector Machine, Neural Networks, Genetic Algorithms; Unsupervised Learning (Cluster analysis): K-Means, SOM, Isomap, Model based Clustering

Assessment and permitted materials

Attandence of lectures, solving and solving of practical exercises (60%), final test (40%)

Minimum requirements and assessment criteria

getting familiar with basic ideas in machine learning and application of the methods wit R and Python.

Examination topics

Lectures with parctical exercises, mainly by using R and Python.

Reading list

Stephen Marsland: Machine Learning, An Algorithmic Perspective,Chapman & Hall/CRC. 2009.
X. Wu, V. Kumar: The Top Ten Algorithms in Data Mining, Chapman&Hall/CRC Data Mining and Knowledge Discovery Series, 2009
Hastie-Tibshirani-Friedman: The Elements of Statistical Learning, Springer 2009
Cherkassky-Mulier: Learning from Data, IEEE Press, Wiley 2007

Association in the course directory

Last modified: Mo 07.09.2020 15:29