050035 VU Machine Learning (2016S)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 01.02.2016 09:00 to Mo 22.02.2016 23:59
- Deregistration possible until Su 20.03.2016 23:59
Details
max. 25 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Friday 04.03. 15:00 - 16:30 Hörsaal 3, Währinger Straße 29 3.OG
- Friday 18.03. 15:00 - 16:30 Hörsaal 3, Währinger Straße 29 3.OG
- Friday 08.04. 15:00 - 16:30 Hörsaal 3, Währinger Straße 29 3.OG
- Friday 15.04. 15:00 - 16:30 Hörsaal 3, Währinger Straße 29 3.OG
- Friday 22.04. 15:00 - 16:30 Hörsaal 3, Währinger Straße 29 3.OG
- Friday 29.04. 15:00 - 16:30 Hörsaal 3, Währinger Straße 29 3.OG
- Friday 06.05. 15:00 - 16:30 Hörsaal 3, Währinger Straße 29 3.OG
- Friday 13.05. 15:00 - 16:30 Hörsaal 3, Währinger Straße 29 3.OG
- Friday 20.05. 15:00 - 16:30 Hörsaal 3, Währinger Straße 29 3.OG
- Friday 27.05. 15:00 - 16:30 Hörsaal 3, Währinger Straße 29 3.OG
- Friday 03.06. 15:00 - 16:30 Hörsaal 3, Währinger Straße 29 3.OG
- Friday 10.06. 15:00 - 16:30 Hörsaal 3, Währinger Straße 29 3.OG
- Friday 17.06. 15:00 - 16:30 Hörsaal 3, Währinger Straße 29 3.OG
- Friday 24.06. 15:00 - 16:30 Hörsaal 3, Währinger Straße 29 3.OG
Information
Aims, contents and method of the course
Basic methods in machine learning: Supervised Learning (classification): Naive Bayes, Classification Trees, Combination Methods, Support Vector Machine, Neural Networks, Genetic Algorithms; Unsupervised Learning (Cluster analysis): K-Means, SOM, Isomap, Model based Clustering
Assessment and permitted materials
Attandence of lectures, solving of practical exercises (50%), course feedback (10%), and a final test (40%)
Minimum requirements and assessment criteria
getting familiar with basic ideas in machine learning and application of the methods with Matlab, R or Python.
Examination topics
Lectures with parctical exercises, mainly by using Matlab, R or Python.
Reading list
Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer 2007;
Hastie-Tibshirani-Friedman: The Elements of Statistical Learning, Springer 2009
Hastie-Tibshirani-Friedman: The Elements of Statistical Learning, Springer 2009
Association in the course directory
Last modified: Mo 07.09.2020 15:29