Universität Wien

050038 VU Scientific Data Management (2016S)

Continuous assessment of course work

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

max. 50 participants
Language: German

Lecturers

Classes (iCal) - next class is marked with N

  • Friday 04.03. 09:45 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
  • Friday 18.03. 09:45 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
  • Friday 08.04. 09:45 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
  • Friday 15.04. 09:45 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
  • Friday 22.04. 09:45 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
  • Friday 29.04. 09:45 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
  • Friday 06.05. 09:45 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
  • Friday 13.05. 09:45 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
  • Friday 20.05. 09:45 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
    Seminarraum 3, Währinger Straße 29 1.UG
    Seminarraum 4, Währinger Straße 29 1.UG
  • Friday 27.05. 09:45 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
  • Friday 03.06. 09:45 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
  • Friday 10.06. 09:45 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
  • Friday 17.06. 09:45 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
  • Friday 24.06. 09:45 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG

Information

Aims, contents and method of the course

The lecture covers essential methods for organizing and analyzing large scale scientific data: distributed data repositories, index structures, hashing and clustering methods. In programming exercises the participants experience possibilities to support similarity search and data mining with parallelization (MapReduce, SPARK) and filter-refinement techniques.

Assessment and permitted materials

Active participation
exercises and programming exercises
final test

Minimum requirements and assessment criteria

Course-specific goals:
- analyze and interpret scientific data,
- evaluate the results,
- select, design and implement solutions for big data,
- support users.

General goals:
- experience of working in a team,
- improvement of implementation skills,
- insights into the links between data mining and scientific computing.

Examination topics

Exercises
programming exercises in teams
final test

Reading list

Ester M., Sander J. Knowledge Discovery in Databases: Techniken und Anwendungen.
J. Leskovec, A. Rajaraman, J. Ullman. Mining of Massive Datasets.
J. Han, M. Kamber, J.Pei.Data Mining: Concepts and Techniques.
I. H. Witten , E. Frank, M. A. Hall. Data Mining: Practical Machine Learning Tools and Techniques.


Association in the course directory

Last modified: Mo 07.09.2020 15:29