Universität Wien FIND

Due to the COVID-19 pandemic, changes to courses and exams may be necessary at short notice (e.g. cancellation of on-site teaching and conversion to online exams). Register for courses/exams via u:space, find out about the current status on u:find and on the moodle learning platform.

Further information about on-site teaching can be found at https://studieren.univie.ac.at/en/info.

052101 VU Numerical Algorithms (2018W)

Continuous assessment of course work

Registration/Deregistration

Details

max. 25 participants
Language: English

Lecturers

Classes (iCal) - next class is marked with N

Tuesday 02.10. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
Tuesday 09.10. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
Tuesday 16.10. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
Tuesday 23.10. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
Tuesday 30.10. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
Tuesday 06.11. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
Tuesday 13.11. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
Tuesday 20.11. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
Tuesday 27.11. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
Tuesday 04.12. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
Tuesday 11.12. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
Tuesday 08.01. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
Tuesday 15.01. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
Tuesday 22.01. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
Tuesday 29.01. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG

Information

Aims, contents and method of the course

Get acquainted with fundamental concepts of numerical algorithms (approximations in numerical computation, conditioning, numerical stability) and with techniques for the analysis of numerical algorithms (perturbation theory). Study selected numerical algorithms (mostly matrix algorithms) in detail. Understand the interdependencies between problem data, numerical algorithm, implementation of the algorithm, hardware, performance and accuracy.

Assessment and permitted materials

Three sets of homework problems (with theoretical and programming components - implementation, experimentation, analysis); test in the middle and in the end of the semester.

Minimum requirements and assessment criteria

The maximum possible score is 100 points (12 per set of homework problems, 32 per test). At least 50 points are required for passing the course.

Examination topics

Material presented in class and contents of homework problems.

Reading list

Slides; M. T. Heath: “Scientific Computing – an Introductory Survey”

Association in the course directory

Last modified: Mo 07.09.2020 15:30