052101 VU Numerical Algorithms (2018W)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Sa 08.09.2018 09:00 to Su 23.09.2018 23:59
- Deregistration possible until Su 14.10.2018 23:59
Details
max. 25 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 02.10. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
- Tuesday 09.10. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
- Tuesday 16.10. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
- Tuesday 23.10. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
- Tuesday 30.10. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
- Tuesday 06.11. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
- Tuesday 13.11. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
- Tuesday 20.11. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
- Tuesday 27.11. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
- Tuesday 04.12. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
- Tuesday 11.12. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
- Tuesday 08.01. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
- Tuesday 15.01. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
- Tuesday 22.01. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
- Tuesday 29.01. 11:30 - 13:00 Hörsaal 2, Währinger Straße 29 2.OG
Information
Aims, contents and method of the course
Get acquainted with fundamental concepts of numerical algorithms (approximations in numerical computation, conditioning, numerical stability) and with techniques for the analysis of numerical algorithms (perturbation theory). Study selected numerical algorithms (mostly matrix algorithms) in detail. Understand the interdependencies between problem data, numerical algorithm, implementation of the algorithm, hardware, performance and accuracy.
Assessment and permitted materials
Three sets of homework problems (with theoretical and programming components - implementation, experimentation, analysis); test in the middle and in the end of the semester.
Minimum requirements and assessment criteria
The maximum possible score is 100 points (12 per set of homework problems, 32 per test). At least 50 points are required for passing the course.
Examination topics
Material presented in class and contents of homework problems.
Reading list
Slides; M. T. Heath: “Scientific Computing – an Introductory Survey”
Association in the course directory
Last modified: Mo 07.09.2020 15:30