052113 VU Software Tools for Computational and Data Science (2023S)
Continuous assessment of course work
Labels
Diese Lehrveranstaltung ist äquivalent zur VU "Software Tools and Libraries for Scientific Computing"
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 13.02.2023 09:00 to Th 23.02.2023 09:00
- Deregistration possible until Tu 14.03.2023 23:59
Details
max. 25 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 01.03. 18:30 - 20:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Monday 06.03. 18:30 - 20:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Wednesday 08.03. 18:30 - 20:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Wednesday 15.03. 18:30 - 20:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Monday 20.03. 18:30 - 20:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Wednesday 22.03. 18:30 - 20:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Monday 27.03. 18:30 - 20:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Wednesday 29.03. 18:30 - 20:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Monday 17.04. 18:30 - 20:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Wednesday 19.04. 18:30 - 20:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Monday 24.04. 18:30 - 20:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Wednesday 26.04. 18:30 - 20:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Wednesday 03.05. 18:30 - 20:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Monday 08.05. 18:30 - 20:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
-
Wednesday
10.05.
18:30 - 20:00
Hörsaal 1, Währinger Straße 29 1.UG
PC-Unterrichtsraum 2, Währinger Straße 29 1.OG - Monday 15.05. 18:30 - 20:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Wednesday 17.05. 18:30 - 20:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Monday 22.05. 18:30 - 20:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Wednesday 24.05. 18:30 - 20:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Wednesday 31.05. 18:30 - 20:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Monday 05.06. 18:30 - 20:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Wednesday 07.06. 18:30 - 20:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Monday 12.06. 18:30 - 20:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Wednesday 14.06. 18:30 - 20:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Monday 19.06. 18:30 - 20:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Wednesday 21.06. 18:30 - 20:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
- Monday 26.06. 18:30 - 20:00 PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
-
Wednesday
28.06.
18:30 - 20:00
Hörsaal 1, Währinger Straße 29 1.UG
PC-Unterrichtsraum 2, Währinger Straße 29 1.OG
Information
Aims, contents and method of the course
We discuss software tools for computational and data science including their foundational numerical algorithms. The students get familiar with using important computational software like BLAS, LAPACK, MLPACK, GNU Octave, MPFR, and PETSc. Computational results are evaluated to ensure good performance. Hands-on experience is strengthened by in-depth discussions.The students are expected to have good general programming skills, basic familiarity with programming in C (other languages upon request), and experience in using GNU/Linux and Bash. The course builds upon the contents of the modules "Introduction to Numerical Computing" (NUM) and "Combinatorial and Numerical Algorithms" (CNA).
Assessment and permitted materials
The grading will be based on homeworks, two written exams (closed book), and two small projects. The projects shall be chosen with respect to the discussed topics.
Minimum requirements and assessment criteria
Presence is mandatory during the entire course. Each part (homework and projects with oral discussion on the computer, written exam) needs a score of at least 50%; grading (20% homework, 40% exams, 40%project): <50%=5, 50% up to 62.5%=4, up to 75%=3, up to 87,5%=2, 87,5% or better=1.
Examination topics
All topics of the lectures will be relevant for the exams.
Reading list
The lectures are accompanied by slides which point to additional relevant literature (supplied in the course). Textbooks etc. are not required.
Association in the course directory
Module: STL
Last modified: Th 27.04.2023 11:07