052200 VU Foundations of Computer Graphics (2020S)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 10.02.2020 09:00 to Th 20.02.2020 09:00
- Deregistration possible until Th 30.04.2020 23:59
Details
max. 25 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 03.03. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
- Thursday 05.03. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
- Tuesday 10.03. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
- Tuesday 17.03. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
- Thursday 19.03. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
- Tuesday 24.03. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
- Thursday 26.03. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
- Tuesday 31.03. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
- Thursday 02.04. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
- Tuesday 21.04. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
- Thursday 23.04. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
- Tuesday 28.04. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
- Thursday 30.04. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
- Tuesday 05.05. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
- Thursday 07.05. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
- Tuesday 12.05. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
- Thursday 14.05. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
- Tuesday 19.05. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
- Tuesday 26.05. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
- Thursday 28.05. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
- Thursday 04.06. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
- Tuesday 09.06. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
- Tuesday 16.06. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
- Thursday 18.06. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
- Tuesday 23.06. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
-
Thursday
25.06.
13:15 - 14:45
Seminarraum 3, Währinger Straße 29 1.UG
Seminarraum 4, Währinger Straße 29 1.UG - Tuesday 30.06. 13:15 - 14:45 Hörsaal 3, Währinger Straße 29 3.OG
Information
Aims, contents and method of the course
Assessment and permitted materials
Assignments: 50%
3xCourse Feedback: 5%
Midterm: 20%
Final: 25%Covid-19 update from 2020-04-30:
Midterm exam: since the university premises are still closed, the midterm test will be held digitally. Details can be found in Moodle in the announcement forum.
Final exam: to date, the final exam is expected to be an on-premise exam.
3xCourse Feedback: 5%
Midterm: 20%
Final: 25%Covid-19 update from 2020-04-30:
Midterm exam: since the university premises are still closed, the midterm test will be held digitally. Details can be found in Moodle in the announcement forum.
Final exam: to date, the final exam is expected to be an on-premise exam.
Minimum requirements and assessment criteria
Prerequisites: StEOP, PR2, MG2, THI, MOD, ADSA minimum grade of 25% must be earned on both Lab 2 and Lab 3.
A total minimum grade of 40% must be earned on both Lab 1 (1a+1b combined) and Lab 4 (4a+4b combined).
The grading scale for the course will be:
1: at least 87.5%
2: at least 75.0%
3: at least 60.0%
4: at least 40.0%
A total minimum grade of 40% must be earned on both Lab 1 (1a+1b combined) and Lab 4 (4a+4b combined).
The grading scale for the course will be:
1: at least 87.5%
2: at least 75.0%
3: at least 60.0%
4: at least 40.0%
Examination topics
1. Discuss the light transport problem and its relation to numerical integration i.e., light is emitted, scatters around the scene, and is measured by the eye.
2. Describe the basic graphics pipeline and how forward and backward rendering factor in this.
3. Create a program to display 3D models of simple graphics images.
4. Derive linear perspective from similar triangles by converting points (x, y, z) to points (x/z, y/z, 1).
5. Obtain 2-dimensional and 3-dimensional points by applying affine transformations.
6. Apply 3-dimensional coordinate system and the changes required to extend 2D transformation operations to handle transformations in 3D.
7. Contrast forward and backward rendering.
8. Explain the concept and applications of texture mapping, sampling, and anti-aliasing.
9. Explain the ray tracing/rasterization duality for the visibility problem.
10. Implement simple procedures that perform transformation and clipping operations on simple 2-dimensional images.
11. Implement a simple real-time renderer using a rasterization API (e.g., OpenGL) using vertex buffers and shaders.
12. Compare and contrast the different rendering techniques.
2. Describe the basic graphics pipeline and how forward and backward rendering factor in this.
3. Create a program to display 3D models of simple graphics images.
4. Derive linear perspective from similar triangles by converting points (x, y, z) to points (x/z, y/z, 1).
5. Obtain 2-dimensional and 3-dimensional points by applying affine transformations.
6. Apply 3-dimensional coordinate system and the changes required to extend 2D transformation operations to handle transformations in 3D.
7. Contrast forward and backward rendering.
8. Explain the concept and applications of texture mapping, sampling, and anti-aliasing.
9. Explain the ray tracing/rasterization duality for the visibility problem.
10. Implement simple procedures that perform transformation and clipping operations on simple 2-dimensional images.
11. Implement a simple real-time renderer using a rasterization API (e.g., OpenGL) using vertex buffers and shaders.
12. Compare and contrast the different rendering techniques.
Reading list
Edward Angel, Dave Shreiner Interactive Computer Graphics with WebGL, 7th edition, Addison-Wesley, 2015.
Association in the course directory
Module: GFX VIN VMI
Last modified: Mo 07.09.2020 15:20
* basic raster graphics algorithms for drawing 2D primitives, antialiasing
* 2D and 3D geometrical transformations, 3D projections/viewing
* polygonal and hierarchical models
* hidden-surface removal
* basic rendering techniques (colour, shading, raytracing)
* interaction techniques
* textures