052813 VU Scientific Data Management (2017S)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 06.02.2017 09:00 to We 22.02.2017 23:59
- Deregistration possible until Mo 20.03.2017 23:59
Details
max. 25 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Thursday 02.03. 08:00 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
- Thursday 09.03. 08:00 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
- Thursday 16.03. 08:00 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
- Thursday 23.03. 08:00 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
- Thursday 30.03. 08:00 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
- Thursday 06.04. 08:00 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
- Thursday 27.04. 08:00 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
- Thursday 04.05. 08:00 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
- Thursday 11.05. 08:00 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
- Thursday 18.05. 08:00 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
- Thursday 01.06. 08:00 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
- Thursday 08.06. 08:00 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
- Thursday 22.06. 08:00 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
- Thursday 29.06. 08:00 - 11:15 Hörsaal 2, Währinger Straße 29 2.OG
Information
Aims, contents and method of the course
Assessment and permitted materials
Active participation
Work on exercise-sheets
Work on programming assignments in groups
Final exam
Work on exercise-sheets
Work on programming assignments in groups
Final exam
Minimum requirements and assessment criteria
For bachelor students, the mandatory prerequisite for this class is the successful completion of ISE or PC.
- ISE: Information Management & Systems Engineering
- PC: Parallel ComputingIt is recommended to complete the following courses beforehand:
- Algorithmen und Datenstrukturen
- Datenbanksysteme
- Software Engineering
- Einführung in Scientific Computing
- Netzwerktechnologien20% Exercise-sheets
40% Programming exercises in Team
40% Final exam
Attendence is mandatory
- ISE: Information Management & Systems Engineering
- PC: Parallel ComputingIt is recommended to complete the following courses beforehand:
- Algorithmen und Datenstrukturen
- Datenbanksysteme
- Software Engineering
- Einführung in Scientific Computing
- Netzwerktechnologien20% Exercise-sheets
40% Programming exercises in Team
40% Final exam
Attendence is mandatory
Examination topics
Clustering:
- K-means and variants
- density-based Clustering
MapReduce
Apache Spark
Feature spaces
Indexing Hashing (LSH)
Network anlysis
- K-means and variants
- density-based Clustering
MapReduce
Apache Spark
Feature spaces
Indexing Hashing (LSH)
Network anlysis
Reading list
Ester M., Sander J. Knowledge Discovery in Databases: Techniken und Anwendungen.
J. Leskovec, A. Rajaraman, J. Ullman. Mining of Massive Datasets.
J. Han, M. Kamber, J.Pei.Data Mining: Concepts and Techniques.
I. H. Witten , E. Frank, M. A. Hall. Data Mining: Practical Machine Learning Tools and Techniques.
J. Leskovec, A. Rajaraman, J. Ullman. Mining of Massive Datasets.
J. Han, M. Kamber, J.Pei.Data Mining: Concepts and Techniques.
I. H. Witten , E. Frank, M. A. Hall. Data Mining: Practical Machine Learning Tools and Techniques.
Association in the course directory
Module: SDM
Last modified: Mo 07.09.2020 15:30
- Analysis and interpretation of scientific data
- Evaluate results of the analysis process
- Implementation of scalable solutions for huge amounts of data
- Users support and adviceGeneric goals:
- Teamwork
- Improvement of programming skills
- Understanding of interplay in Data Mining and Scientific Computing