Universität Wien FIND

052813 VU Scientific Data Management (2019S)

Continuous assessment of course work

Details

max. 25 participants
Language: English

Lecturers

Classes (iCal) - next class is marked with N

Tuesday 05.03. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
Thursday 07.03. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
Thursday 14.03. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
Tuesday 19.03. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
Thursday 21.03. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
Tuesday 26.03. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
Thursday 28.03. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
Tuesday 02.04. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
Thursday 04.04. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
Tuesday 09.04. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
Thursday 11.04. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
Tuesday 30.04. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
Thursday 02.05. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
Tuesday 07.05. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
Thursday 09.05. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
Tuesday 14.05. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
Thursday 16.05. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
Tuesday 21.05. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
Thursday 23.05. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
Tuesday 28.05. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
Tuesday 04.06. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
Thursday 06.06. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
Thursday 13.06. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
Tuesday 18.06. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
Tuesday 25.06. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
Thursday 27.06. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG

Information

Aims, contents and method of the course

This course introduces central methods and approaches for the organization and analysis of large and scientific data: distributed data repositories, index and access structures, hasing and clustering techniques. In programming exercises, students learn ways to support similarity search and data mining on large data. E.g. Parallelisation with MapReduce, Apache Spark or filter-refinement techniques.

Subject specific goals:
- Analysis and interpretation of scientific data
- Evaluate results of the analysis process
- Implementation of scalable solutions for huge amounts of data
- Users support and advice

Generic goals:
- Teamwork
- Improvement of programming skills
- Understanding of interplay in Data Mining and Scientific Computing

Assessment and permitted materials

Active participation
Work on exercise-sheets
Work on programming assignments in groups
Final exam

Minimum requirements and assessment criteria

It is recommended to complete the following courses beforehand:
- Algorithmen und Datenstrukturen
- Datenbanksysteme
- Software Engineering
- Einführung in Scientific Computing
- Netzwerktechnologien

- 20% exercise-sheets
(pen and paper homework, which has to be solved individually, using the presentation slides)

- 40% programming assignments in team
(auxiliary materials: programming API, lecture slides)

- 40% written final exam (without auxiliary materials)

Attendence in the lectures is mandatory.

>87,00 % 1
between 75,00 % and 86,99 %: 2
between 63,00 % and 74,99 %: 3
between 50,00 % and 62,99 %: 4
< 50% : 5

Examination topics

Clustering:
- K-means and variants
- density-based Clustering
- on massive datasets
MapReduce
Apache Spark
Feature spaces
Hashing (LSH)
Indexing
Granger Causality

Reading list

Ester M., Sander J. Knowledge Discovery in Databases: Techniken und Anwendungen.
J. Leskovec, A. Rajaraman, J. Ullman. Mining of Massive Datasets.
J. Han, M. Kamber, J.Pei.Data Mining: Concepts and Techniques.
I. H. Witten , E. Frank, M. A. Hall. Data Mining: Practical Machine Learning Tools and Techniques.

Association in the course directory

Module: SDM

Last modified: We 06.11.2019 11:07