052813 VU Scientific Data Management (2020S)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 10.02.2020 09:00 to Th 20.02.2020 09:00
- Deregistration possible until Th 30.04.2020 23:59
Details
max. 25 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 03.03. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Thursday 05.03. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
- Tuesday 10.03. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Tuesday 17.03. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Thursday 19.03. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
- Tuesday 24.03. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Thursday 26.03. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
- Tuesday 31.03. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Thursday 02.04. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
- Tuesday 21.04. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Thursday 23.04. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
- Tuesday 28.04. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Thursday 30.04. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
- Tuesday 05.05. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Thursday 07.05. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
- Tuesday 12.05. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Thursday 14.05. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
- Tuesday 19.05. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Tuesday 26.05. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Thursday 28.05. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
- Thursday 04.06. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
- Tuesday 09.06. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Tuesday 16.06. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Thursday 18.06. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
- Tuesday 23.06. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Thursday 25.06. 08:00 - 09:30 Hörsaal 2, Währinger Straße 29 2.OG
- Tuesday 30.06. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
Information
Aims, contents and method of the course
Assessment and permitted materials
Active participation
Work on exercise-sheets
Work on programming assignments in groups
Final exam
Work on exercise-sheets
Work on programming assignments in groups
Final exam
Minimum requirements and assessment criteria
It is recommended to complete the following courses beforehand:
- Algorithmen und Datenstrukturen
- Datenbanksysteme
- Software Engineering
- Einführung in Scientific Computing
- Netzwerktechnologien- 20% exercise-sheets
(pen and paper homework, which has to be solved individually, using the presentation slides)- 40% programming assignments in team
(auxiliary materials: programming API, lecture slides)- 40% written final exam (online see Moodle course for details)>87,00 % 1
between 75,00 % and 86,99 %: 2
between 63,00 % and 74,99 %: 3
between 50,00 % and 62,99 %: 4
< 50% : 5
- Algorithmen und Datenstrukturen
- Datenbanksysteme
- Software Engineering
- Einführung in Scientific Computing
- Netzwerktechnologien- 20% exercise-sheets
(pen and paper homework, which has to be solved individually, using the presentation slides)- 40% programming assignments in team
(auxiliary materials: programming API, lecture slides)- 40% written final exam (online see Moodle course for details)>87,00 % 1
between 75,00 % and 86,99 %: 2
between 63,00 % and 74,99 %: 3
between 50,00 % and 62,99 %: 4
< 50% : 5
Examination topics
Clustering:
- K-means and variants
- density-based Clustering
- on massive datasets
MapReduce
Apache Spark
Feature spaces
Hashing (LSH)
Network Analysis
Indexing
Granger Causality
- K-means and variants
- density-based Clustering
- on massive datasets
MapReduce
Apache Spark
Feature spaces
Hashing (LSH)
Network Analysis
Indexing
Granger Causality
Reading list
Ester M., Sander J. Knowledge Discovery in Databases: Techniken und Anwendungen.
J. Leskovec, A. Rajaraman, J. Ullman. Mining of Massive Datasets.
J. Han, M. Kamber, J.Pei.Data Mining: Concepts and Techniques.
I. H. Witten , E. Frank, M. A. Hall. Data Mining: Practical Machine Learning Tools and Techniques.
J. Leskovec, A. Rajaraman, J. Ullman. Mining of Massive Datasets.
J. Han, M. Kamber, J.Pei.Data Mining: Concepts and Techniques.
I. H. Witten , E. Frank, M. A. Hall. Data Mining: Practical Machine Learning Tools and Techniques.
Association in the course directory
Module: SDM
Last modified: Mo 07.09.2020 15:20
- Analysis and interpretation of scientific data
- Evaluate results of the analysis process
- Implementation of scalable solutions for huge amounts of data
- Users support and adviceGeneric goals:
- Teamwork
- Improvement of programming skills
- Understanding of interplay in Data Mining and Scientific Computing