052813 VU Scientific Data Management (2021S)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 15.02.2021 09:00 to Mo 22.02.2021 09:00
- Deregistration possible until Su 14.03.2021 23:59
Details
max. 25 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
The course will be held online until further notice.
- Tuesday 02.03. 15:00 - 16:30 Digital
- Thursday 04.03. 08:00 - 09:30 Digital
- Tuesday 09.03. 15:00 - 16:30 Digital
- Thursday 11.03. 08:00 - 09:30 Digital
- Tuesday 16.03. 15:00 - 16:30 Digital
- Thursday 18.03. 08:00 - 09:30 Digital
- Tuesday 23.03. 15:00 - 16:30 Digital
- Thursday 25.03. 08:00 - 09:30 Digital
- Tuesday 13.04. 15:00 - 16:30 Digital
- Thursday 15.04. 08:00 - 09:30 Digital
- Tuesday 20.04. 15:00 - 16:30 Digital
- Thursday 22.04. 08:00 - 09:30 Digital
- Tuesday 27.04. 15:00 - 16:30 Digital
- Thursday 29.04. 08:00 - 09:30 Digital
- Tuesday 04.05. 15:00 - 16:30 Digital
- Thursday 06.05. 08:00 - 09:30 Digital
- Tuesday 11.05. 15:00 - 16:30 Digital
- Tuesday 18.05. 15:00 - 16:30 Digital
- Thursday 20.05. 08:00 - 09:30 Digital
- Thursday 27.05. 08:00 - 09:30 Digital
- Tuesday 01.06. 15:00 - 16:30 Digital
- Tuesday 08.06. 15:00 - 16:30 Digital
- Thursday 10.06. 08:00 - 09:30 Digital
- Tuesday 15.06. 15:00 - 16:30 Digital
- Thursday 17.06. 08:00 - 09:30 Digital
- Tuesday 22.06. 15:00 - 16:30 Digital
- Thursday 24.06. 08:00 - 09:30 Digital
- Tuesday 29.06. 15:00 - 16:30 Digital
Information
Aims, contents and method of the course
Assessment and permitted materials
Active participation
Work on exercise-sheets
Work on programming assignments in groups
Final exam
Work on exercise-sheets
Work on programming assignments in groups
Final exam
Minimum requirements and assessment criteria
It is recommended to complete the following courses beforehand:
- Algorithmen und Datenstrukturen
- Datenbanksysteme
- Software Engineering
- Netzwerktechnologien30% exercise sheets
30% programming assignments in teams
40% written final exam>87,00%: 1
75,00% - 86,99: 2
63,00% - 74,99%: 3
50,00% - 62,99%: 4
< 50%: 5
- Algorithmen und Datenstrukturen
- Datenbanksysteme
- Software Engineering
- Netzwerktechnologien30% exercise sheets
30% programming assignments in teams
40% written final exam>87,00%: 1
75,00% - 86,99: 2
63,00% - 74,99%: 3
50,00% - 62,99%: 4
< 50%: 5
Examination topics
Scientific Data and Feature Spaces
Clustering
Big Data Frameworks
Searching Numerical Data
Searching Sets
Searching & Mining Graphs
Analyzing Large Networks
Clustering
Big Data Frameworks
Searching Numerical Data
Searching Sets
Searching & Mining Graphs
Analyzing Large Networks
Reading list
Ester M., Sander J. Knowledge Discovery in Databases: Techniken und Anwendungen.
J. Leskovec, A. Rajaraman, J. Ullman. Mining of Massive Datasets.
J. Han, M. Kamber, J.Pei.Data Mining: Concepts and Techniques.
I. H. Witten , E. Frank, M. A. Hall. Data Mining: Practical Machine Learning Tools and Techniques.
J. Leskovec, A. Rajaraman, J. Ullman. Mining of Massive Datasets.
J. Han, M. Kamber, J.Pei.Data Mining: Concepts and Techniques.
I. H. Witten , E. Frank, M. A. Hall. Data Mining: Practical Machine Learning Tools and Techniques.
Association in the course directory
Module: SDM
Last modified: Fr 12.05.2023 00:13
- Analysis of scientific data
- Interpretation and evaluation of results of the analysis process
- Choosing and applying techniques for structured data
- Implementation of scalable solutions for large amounts of data
- Users support and adviceGeneric goals:
- Teamwork
- Improvement of programming skills
- Understanding of interplay in data mining and scientific computing