Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

053612 VU Optimisation Methods for Data Science (2022W)

Continuous assessment of course work
ON-SITE

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

max. 25 participants
Language: English

Lecturers

Classes (iCal) - next class is marked with N

Written Exam:

Thursday 19 Jan 2023, 11:30-13:00, location: HS 11 OMP

  • Monday 03.10. 09:45 - 11:15 Seminarraum 15 Oskar-Morgenstern-Platz 1 3.Stock
  • Thursday 06.10. 11:30 - 13:00 Seminarraum 15 Oskar-Morgenstern-Platz 1 3.Stock
  • Monday 10.10. 09:45 - 11:15 Seminarraum 15 Oskar-Morgenstern-Platz 1 3.Stock
  • Thursday 13.10. 11:30 - 13:00 Seminarraum 15 Oskar-Morgenstern-Platz 1 3.Stock
  • Monday 17.10. 09:45 - 11:15 Seminarraum 15 Oskar-Morgenstern-Platz 1 3.Stock
  • Thursday 20.10. 11:30 - 13:00 Seminarraum 15 Oskar-Morgenstern-Platz 1 3.Stock
  • Monday 24.10. 09:45 - 11:15 Seminarraum 15 Oskar-Morgenstern-Platz 1 3.Stock
  • Thursday 27.10. 11:30 - 13:00 Seminarraum 15 Oskar-Morgenstern-Platz 1 3.Stock
  • Monday 31.10. 09:45 - 11:15 Seminarraum 15 Oskar-Morgenstern-Platz 1 3.Stock
  • Thursday 03.11. 11:30 - 13:00 Seminarraum 15 Oskar-Morgenstern-Platz 1 3.Stock
  • Monday 07.11. 09:45 - 11:15 Seminarraum 15 Oskar-Morgenstern-Platz 1 3.Stock
  • Thursday 10.11. 11:30 - 13:00 Seminarraum 15 Oskar-Morgenstern-Platz 1 3.Stock
  • Monday 14.11. 09:45 - 11:15 Seminarraum 15 Oskar-Morgenstern-Platz 1 3.Stock
  • Thursday 17.11. 11:30 - 13:00 Seminarraum 15 Oskar-Morgenstern-Platz 1 3.Stock
  • Monday 21.11. 09:45 - 11:15 Seminarraum 15 Oskar-Morgenstern-Platz 1 3.Stock
  • Thursday 24.11. 11:30 - 13:00 Seminarraum 15 Oskar-Morgenstern-Platz 1 3.Stock
  • Monday 28.11. 09:45 - 11:15 Seminarraum 15 Oskar-Morgenstern-Platz 1 3.Stock
  • Thursday 01.12. 11:30 - 13:00 Seminarraum 15 Oskar-Morgenstern-Platz 1 3.Stock
  • Monday 05.12. 09:45 - 11:15 Seminarraum 15 Oskar-Morgenstern-Platz 1 3.Stock
  • Monday 12.12. 09:45 - 11:15 Seminarraum 15 Oskar-Morgenstern-Platz 1 3.Stock
  • Thursday 15.12. 11:30 - 13:00 Seminarraum 15 Oskar-Morgenstern-Platz 1 3.Stock
  • Monday 09.01. 09:45 - 11:15 Seminarraum 15 Oskar-Morgenstern-Platz 1 3.Stock
  • Thursday 12.01. 11:30 - 13:00 Seminarraum 15 Oskar-Morgenstern-Platz 1 3.Stock
  • Monday 16.01. 09:45 - 11:15 Seminarraum 15 Oskar-Morgenstern-Platz 1 3.Stock
  • Thursday 19.01. 11:30 - 13:00 Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
    Seminarraum 15 Oskar-Morgenstern-Platz 1 3.Stock
  • Monday 23.01. 09:45 - 11:15 Seminarraum 15 Oskar-Morgenstern-Platz 1 3.Stock
  • Thursday 26.01. 11:30 - 13:00 Seminarraum 15 Oskar-Morgenstern-Platz 1 3.Stock
  • Monday 30.01. 09:45 - 11:15 Seminarraum 15 Oskar-Morgenstern-Platz 1 3.Stock

Information

Aims, contents and method of the course

The lecture will be held in presence.

This course will cover foundations of duality, a key technology in optimization, with a special focus on (larger scale) algorithmic applications in data science.

Assessment and permitted materials

(1) a written exam at the end of the semester
(2) weekly exercises
(3) bonus points for active participation during classes

Written Exam:

Thursday 19 Jan 2023, 11:30-13:00, location: HS 11 OMP

Minimum requirements and assessment criteria

Exam: 50%
Exercises: 35%
Activity: 15%

Precentage/Grades:

0-53: nicht genuegend/fail (5)
54-65: genuegend/pass (4)
66-77: befriedigend/satisfactory (3)
78-89: gut/good (2)
90-100: sehr gut/excellent (1)

Examination topics

all material covered during the lecture

Reading list

Lecture Notes (see moodle)

Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming: Theory and Algorithms, Wiley

Stephen Boyd and Lieven Vandenberghe.
Convex Optimization.
https://web.stanford.edu/~boyd/cvxbook/.

Martin Jaggi, Bernd Gärtner,
Optimization for Machine Learning (Lect.notes)
https://raw.githubusercontent.com/epfml/OptML_course/master/lecture_notes/lecture-notes.pdf

Association in the course directory

Modul: OMD

Last modified: Mo 14.11.2022 15:28