053613 VU Introduction to Machine Learning (2021W)
Continuous assessment of course work
Labels
MIXED
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 13.09.2021 09:00 to Mo 20.09.2021 09:00
- Deregistration possible until Th 14.10.2021 23:59
Details
max. 25 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Friday 01.10. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
- Monday 04.10. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Friday 08.10. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
- Monday 11.10. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Friday 15.10. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
- Monday 18.10. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Friday 22.10. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
- Monday 25.10. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Friday 29.10. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
- Friday 05.11. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
- Monday 08.11. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Friday 12.11. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
- Monday 15.11. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Friday 19.11. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
- Monday 22.11. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Friday 26.11. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
- Monday 29.11. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Friday 03.12. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
- Monday 06.12. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Friday 10.12. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
- Monday 13.12. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Friday 17.12. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
- Friday 07.01. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
- Monday 10.01. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Friday 14.01. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
- Monday 17.01. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Friday 21.01. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
- Monday 24.01. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
- Friday 28.01. 13:15 - 14:45 Hörsaal 2, Währinger Straße 29 2.OG
- Monday 31.01. 15:00 - 16:30 Hörsaal 2, Währinger Straße 29 2.OG
Information
Aims, contents and method of the course
Assessment and permitted materials
Written exam
Programming assignments
Pen & paper exercises
Programming assignments
Pen & paper exercises
Minimum requirements and assessment criteria
30% Written exam
40% Programming exercises
30% Pen & paper exercisesP = Average percentage on the final written exam, the programming exercises, and the pen & paper exercise87.5% <= P <= % Sehr Gut (1)
75% <= P < 87.5% Gut (2)
62% <= P < 75% Befriedigend (3)
50% <= P < 62% Genügend (4)
0% <= P < 50% Nicht Genügend (5)To successfully complete the course you need to achieve at least 30% of the points of the written exam, 50% of the points on the pen & paper exercises and 50% of the points on the programming assignments .
40% Programming exercises
30% Pen & paper exercisesP = Average percentage on the final written exam, the programming exercises, and the pen & paper exercise87.5% <= P <= % Sehr Gut (1)
75% <= P < 87.5% Gut (2)
62% <= P < 75% Befriedigend (3)
50% <= P < 62% Genügend (4)
0% <= P < 50% Nicht Genügend (5)To successfully complete the course you need to achieve at least 30% of the points of the written exam, 50% of the points on the pen & paper exercises and 50% of the points on the programming assignments .
Examination topics
The presented topics in the lecture (according to slides + exercises). Referenced Literature (as indicated in detail on lecture slides).
Reading list
* Christopher Bishop, 2006, "Pattern Recognition and Machine Learning", Springer; available online: https://www.microsoft.com/en-us/research/publication/pattern-recognition-machine-learning/
* Trevor Hastie, Robert Tibshirani, Jerome Friedman, 2009, "The Elements of Statistical Learning: Data Mining, Inference, and Prediction", Springer; available online: https://web.stanford.edu/~hastie/ElemStatLearn/
* Tom Mitchell, 1997, "Machine Learning", McGraw Hill
* Shai Shalev-Shwartz and Shai Ben-David, 2014, "Understanding Machine Learning: From Theory to Algorithms", Cambridge University Press; available online: https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/
* Trevor Hastie, Robert Tibshirani, Jerome Friedman, 2009, "The Elements of Statistical Learning: Data Mining, Inference, and Prediction", Springer; available online: https://web.stanford.edu/~hastie/ElemStatLearn/
* Tom Mitchell, 1997, "Machine Learning", McGraw Hill
* Shai Shalev-Shwartz and Shai Ben-David, 2014, "Understanding Machine Learning: From Theory to Algorithms", Cambridge University Press; available online: https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/
Association in the course directory
Last modified: We 01.12.2021 14:48
Update December 1st: Until further notice all lectures and exercise sessions will be held online. Links for joining are available through Moodle.
--Important: We will have the first lecture online (BBB) on Friday October 1st at 13:15.Goals:
Upon successful participation in the course, students will understand the fundamentals of machine learning and how to apply basic machine learning approaches/ideas in theory and practice.Lecture Contents:
* What is Machine Learning?
* Basic Machine Learning pipelines
* Linear models for regression
* Linear models for classification
* Model validation and model selection
* Kernels
* Neural networks
* Dimensionality reduction
* Probabilistic modeling
* Generative modeling
* Deep generative modelsMethod:
Lecture + pen & paper exercises + programming exercises