060104 UE Airborne Laser Scanning (LiDAR) for archaeologists (2025S)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Sa 01.02.2025 09:00 to Th 27.02.2025 23:59
- Deregistration possible until Mo 31.03.2025 23:59
Details
max. 20 participants
Language: German
Lecturers
Classes
Mo, 9-12 Uhr im GIS-Labor
03.04. (9.00-12.00); 10.04. (9.00-12.00); 05.05. (9.00-12:00); 08.05. (9.00-12.00); 15.05. (9-12.00); 22.05. (9.00-12.00); 12.06. (9.00-12.00);GIS-Labor
Information
Aims, contents and method of the course
Assessment and permitted materials
Personal attendance required; active participation (involvement in discussions);
mid-term test in the unit on 22 May.
Personal completion of an assigned task with a written report.
mid-term test in the unit on 22 May.
Personal completion of an assigned task with a written report.
Minimum requirements and assessment criteria
Prerequisite for participation in the course: GIS knowledge (ArcGIS or QGIS)!Assessment:
A total of 100 points can be achieved:- Test in the unit on 22 May (theory): 40 points.
- Interpretation of ALS-based data and creation of a report within a given time frame (by 1 June): 60 points. Further details will be provided in the first session of the course. The last session (12 June 2025) is scheduled for oral and written feedback on the report.Grading:
• 1 (very good) 100-90 points
• 2 (good) 89-81 points
• 3 (satisfactory) 80-71 points
• 4 (sufficient) 70-61 points
• 5 (insufficient) 60-0 points
A total of 100 points can be achieved:- Test in the unit on 22 May (theory): 40 points.
- Interpretation of ALS-based data and creation of a report within a given time frame (by 1 June): 60 points. Further details will be provided in the first session of the course. The last session (12 June 2025) is scheduled for oral and written feedback on the report.Grading:
• 1 (very good) 100-90 points
• 2 (good) 89-81 points
• 3 (satisfactory) 80-71 points
• 4 (sufficient) 70-61 points
• 5 (insufficient) 60-0 points
Examination topics
Test on 22 May: Questions on the theoretical part. Preparatory literature will be provided.
Final report: Participants must independently solve a task and write a report. Submission by 1 June 2025 at the latest.
Final report: Participants must independently solve a task and write a report. Submission by 1 June 2025 at the latest.
Reading list
Briese, C.; Pfennigbauer, M.; Ullrich, A.; Doneus, M. (2014): Radiometric Information from Airborne Laser Scanning for Archaeological Prospection. In: International Journal of Heritage in the Digital Era 3 (1), S. 159178.
Crutchley, S. (2010): The Light Fantastic. Using airborne lidar in archaeological survey. Swindon: English Heritage Publishing.
Doneus, M. (2013): Openness as Visualization Technique for Interpretative Mapping of Airborne Lidar Derived Digital Terrain Models. In: Remote Sensing of Environment (5), S. 64276442.
Doneus, M.; Briese, C.; Fera, M.; Janner, M. (2008): Archaeological prospection of forested areas using full-waveform airborne laser scanning. In: Journal of Archaeological Science 35, S. 882893.
Doneus, M.; Briese, C. (2011): Airborne Laser Scanning in Forested Areas - Potential and Limitations of an Archaeological Prospection Technique. In: David Cowley (Hg.): Remote Sensing for Archaeological Heritage Management. Proceedings of the 11th EAC Heritage Management Symposium, Reykjavik, Iceland, 25-27 March 2010. Budapest: Archaeolingua; EAC (Occasional Publication of the Aerial Archaeology Research Group, 3), S. 5376.
Doneus, M.; Doneus, N.; Briese, C.; Pregesbauer, M.; Mandlburger, G.; Verhoeven, G. (2013): Airborne Laser Bathymetry detecting and recording submerged archaeological sites from the air. In: Journal of Archaeological Science 40, S. 21362151. DOI: 10.1016/j.jas.2012.12.021.
M. Doneus, N. Doneus, D. Cowley, Confronting Complexity: Interpretation of a Dry Stone Walled Landscape on the Island of Cres, Croatia, Land 2022, 11, 1672, 1-43. doi: 10.3390/land11101672. (peer review, open access)
Doneus, M.; Kühtreiber, T. (2013): Airborne laser scanning and archaeological interpretation bringing back the people. In: Rachel S. Opitz und David Cowley (Hg.): Interpreting archaeological topography. Airborne laser scanning, 3D data and ground observation. Oxford: Oxbow Books (Occasional Publication of the Aerial Archaeology Research Group, 5), S. 3250.
Doneus, M.; Banaszek, L.; Verhoeven, G. J. (2022): The Impact of Vegetation on the Visibility of Archaeological Features in Airborne Laser Scanning Datasets from Different Acquisition Dates. In: Remote Sensing 14 (4), S. 858. DOI: 10.3390/rs14040858.
M. Doneus, W. Neubauer, R. Filzwieser, C. Sevara, Stratigraphy from Topography II. The Practical Application of the Harris Matrix for the GIS-based Spatiotemporal Archaeological Interpretation of Topographical Data, Archaeologia Austriaca 2022. doi: 10.1553/archaeologia106s223.
Hesse, R. (2010): LiDAR-derived Local Relief Models - a new tool for archaeological prospection. In: Archaeological Prospection 17 (2), S. 6772. DOI: 10.1002/arp.374.
Kokalj, Žiga; Somrak, Maja (2019): Why Not a Single Image? Combining Visualizations to Facilitate Fieldwork and On-Screen Mapping. In: Remote Sensing 11 (7), S. 747. DOI: 10.3390/rs11070747.
Kokalj, Žiga; Zakšek, Klemen; Oštir, Krištof (2013): Visualizations of lidar derived relief models. In: Rachel S. Opitz und David Cowley (Hg.): Interpreting archaeological topography. Airborne laser scanning, 3D data and ground observation. Oxford: Oxbow Books (Occasional Publication of the Aerial Archaeology Research Group, 5), S. 100114.
Lozic, Edisa; Štular, Benjamin (2021): Documentation of Archaeology-Specific Workflow for Airborne LiDAR Data Processing. In: Geosciences 11 (1), S. 126. DOI:10.3390/geosciences11010026.
Štular, Benjamin; Eichert, S.; Lozic, Edisa (2021): Airborne LiDAR Point Cloud Processing for Archaeology. Pipeline and QGIS Toolbox. In: Remote Sensing 13 (16), S. 3225. DOI: 10.3390/rs13163225.
Štular, Benjamin; Lozic, Edisa; Eichert, S. (2021): Airborne LiDAR-Derived Digital Elevation Model for Archaeology. In: Remote Sensing 13 (9), S. 1855. DOI: 10.3390/rs13091855.
Zakšek, Klemen; Oštir, Krištof; Kokalj, Žiga (2011): Sky-View Factor as a Relief Visualization Technique. In: Remote Sensing of Environment 3 (2), S. 398415.
Crutchley, S. (2010): The Light Fantastic. Using airborne lidar in archaeological survey. Swindon: English Heritage Publishing.
Doneus, M. (2013): Openness as Visualization Technique for Interpretative Mapping of Airborne Lidar Derived Digital Terrain Models. In: Remote Sensing of Environment (5), S. 64276442.
Doneus, M.; Briese, C.; Fera, M.; Janner, M. (2008): Archaeological prospection of forested areas using full-waveform airborne laser scanning. In: Journal of Archaeological Science 35, S. 882893.
Doneus, M.; Briese, C. (2011): Airborne Laser Scanning in Forested Areas - Potential and Limitations of an Archaeological Prospection Technique. In: David Cowley (Hg.): Remote Sensing for Archaeological Heritage Management. Proceedings of the 11th EAC Heritage Management Symposium, Reykjavik, Iceland, 25-27 March 2010. Budapest: Archaeolingua; EAC (Occasional Publication of the Aerial Archaeology Research Group, 3), S. 5376.
Doneus, M.; Doneus, N.; Briese, C.; Pregesbauer, M.; Mandlburger, G.; Verhoeven, G. (2013): Airborne Laser Bathymetry detecting and recording submerged archaeological sites from the air. In: Journal of Archaeological Science 40, S. 21362151. DOI: 10.1016/j.jas.2012.12.021.
M. Doneus, N. Doneus, D. Cowley, Confronting Complexity: Interpretation of a Dry Stone Walled Landscape on the Island of Cres, Croatia, Land 2022, 11, 1672, 1-43. doi: 10.3390/land11101672. (peer review, open access)
Doneus, M.; Kühtreiber, T. (2013): Airborne laser scanning and archaeological interpretation bringing back the people. In: Rachel S. Opitz und David Cowley (Hg.): Interpreting archaeological topography. Airborne laser scanning, 3D data and ground observation. Oxford: Oxbow Books (Occasional Publication of the Aerial Archaeology Research Group, 5), S. 3250.
Doneus, M.; Banaszek, L.; Verhoeven, G. J. (2022): The Impact of Vegetation on the Visibility of Archaeological Features in Airborne Laser Scanning Datasets from Different Acquisition Dates. In: Remote Sensing 14 (4), S. 858. DOI: 10.3390/rs14040858.
M. Doneus, W. Neubauer, R. Filzwieser, C. Sevara, Stratigraphy from Topography II. The Practical Application of the Harris Matrix for the GIS-based Spatiotemporal Archaeological Interpretation of Topographical Data, Archaeologia Austriaca 2022. doi: 10.1553/archaeologia106s223.
Hesse, R. (2010): LiDAR-derived Local Relief Models - a new tool for archaeological prospection. In: Archaeological Prospection 17 (2), S. 6772. DOI: 10.1002/arp.374.
Kokalj, Žiga; Somrak, Maja (2019): Why Not a Single Image? Combining Visualizations to Facilitate Fieldwork and On-Screen Mapping. In: Remote Sensing 11 (7), S. 747. DOI: 10.3390/rs11070747.
Kokalj, Žiga; Zakšek, Klemen; Oštir, Krištof (2013): Visualizations of lidar derived relief models. In: Rachel S. Opitz und David Cowley (Hg.): Interpreting archaeological topography. Airborne laser scanning, 3D data and ground observation. Oxford: Oxbow Books (Occasional Publication of the Aerial Archaeology Research Group, 5), S. 100114.
Lozic, Edisa; Štular, Benjamin (2021): Documentation of Archaeology-Specific Workflow for Airborne LiDAR Data Processing. In: Geosciences 11 (1), S. 126. DOI:10.3390/geosciences11010026.
Štular, Benjamin; Eichert, S.; Lozic, Edisa (2021): Airborne LiDAR Point Cloud Processing for Archaeology. Pipeline and QGIS Toolbox. In: Remote Sensing 13 (16), S. 3225. DOI: 10.3390/rs13163225.
Štular, Benjamin; Lozic, Edisa; Eichert, S. (2021): Airborne LiDAR-Derived Digital Elevation Model for Archaeology. In: Remote Sensing 13 (9), S. 1855. DOI: 10.3390/rs13091855.
Zakšek, Klemen; Oštir, Krištof; Kokalj, Žiga (2011): Sky-View Factor as a Relief Visualization Technique. In: Remote Sensing of Environment 3 (2), S. 398415.
Association in the course directory
Last modified: We 19.02.2025 15:46
The course teaches the theoretical and practical basics of this method using archaeological examples. In the practical part of the course, terrain models are calculated, visualised and interpreted archaeologically.