Universität Wien

080107 UE Course: Coding, Automating, and Visualizing Art History (2024W)

Continuous assessment of course work

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: English

Lecturers

Classes (iCal) - next class is marked with N

  • Thursday 03.10. 14:00 - 15:30 Seminarraum 4 d. Inst. f. Kunstgeschichte (1. Stock) UniCampus Hof 9 3F-O1-27
  • Thursday 10.10. 14:00 - 15:30 Seminarraum 4 d. Inst. f. Kunstgeschichte (1. Stock) UniCampus Hof 9 3F-O1-27
  • Thursday 17.10. 14:00 - 15:30 Seminarraum 4 d. Inst. f. Kunstgeschichte (1. Stock) UniCampus Hof 9 3F-O1-27
  • Thursday 24.10. 14:00 - 15:30 Seminarraum 4 d. Inst. f. Kunstgeschichte (1. Stock) UniCampus Hof 9 3F-O1-27
  • Thursday 31.10. 14:00 - 15:30 Seminarraum 4 d. Inst. f. Kunstgeschichte (1. Stock) UniCampus Hof 9 3F-O1-27
  • Thursday 07.11. 14:00 - 15:30 Seminarraum 4 d. Inst. f. Kunstgeschichte (1. Stock) UniCampus Hof 9 3F-O1-27
  • Thursday 14.11. 14:00 - 15:30 Seminarraum 4 d. Inst. f. Kunstgeschichte (1. Stock) UniCampus Hof 9 3F-O1-27
  • Thursday 21.11. 14:00 - 15:30 Seminarraum 4 d. Inst. f. Kunstgeschichte (1. Stock) UniCampus Hof 9 3F-O1-27
  • Thursday 28.11. 14:00 - 15:30 Seminarraum 4 d. Inst. f. Kunstgeschichte (1. Stock) UniCampus Hof 9 3F-O1-27
  • Thursday 05.12. 14:00 - 15:30 Seminarraum 4 d. Inst. f. Kunstgeschichte (1. Stock) UniCampus Hof 9 3F-O1-27
  • Thursday 09.01. 14:00 - 15:30 Seminarraum 4 d. Inst. f. Kunstgeschichte (1. Stock) UniCampus Hof 9 3F-O1-27
  • Thursday 16.01. 14:00 - 15:30 Seminarraum 4 d. Inst. f. Kunstgeschichte (1. Stock) UniCampus Hof 9 3F-O1-27
  • Thursday 23.01. 14:00 - 15:30 Seminarraum 4 d. Inst. f. Kunstgeschichte (1. Stock) UniCampus Hof 9 3F-O1-27
  • Thursday 30.01. 14:00 - 15:30 Seminarraum 4 d. Inst. f. Kunstgeschichte (1. Stock) UniCampus Hof 9 3F-O1-27

Information

Aims, contents and method of the course

This course is designed for Bachelor's and Master's students in Art History interested in learning coding, with a focus on data analysis and visualization. You'll learn Python to automate repetitive tasks and generate visual representations of art historical data. Ideal for students attending the seminar "Networks of the Avantgardes - Art History with Digital Visualizations", or anyone curious about starting coding. No prior experience is needed. Bringing a laptop is recommended (not applicable for the first session). We'll guide you through installing free software to enhance your learning experience.

· Contents:
The course will cover (subject to changes based on time constraints as well as participants' interests):
1. Introduction
2. Python Basics
3. Basic Statistics and Plotting
4. Social Network Analysis
5. Regression and Clustering
6. Eye Tracking Data Visualization
7. Further Topics in Data Science

· Language:
Course materials will be presented in English, but participants may choose to communicate with the instructor and complete assignments in either English or German.

Assessment and permitted materials

Examination and Grading:
Assessment will be based on a series of coding assignments distributed throughout the semester (80%) and a presentation (20%).

Minimum requirements and assessment criteria

Minimum requirement:
- Compulsory attendance. In the event of an absence due to illness or an exceptional family situation, written proof must be presented.
- All partial achievements must be completed in order to successfully complete the course.

Assessment criteria:
90-100: Very Good (1)
80-89: Good (2)
70-79: Satisfactory (3)
60-69: Sufficient (4)
0-59: Failed (5)

Examination topics

The examination material is the content of the course.

Reading list

Slides

Association in the course directory

Last modified: Th 31.10.2024 20:25