Universität Wien
Warning! The directory is not yet complete and will be amended until the beginning of the term.

136040 VU Practical Machine Learning for Natural Language Processing (2025S)

Continuous assessment of course work

Details

max. 25 participants
Language: English

Lecturers

Classes (iCal) - next class is marked with N

  • Thursday 06.03. 11:30 - 13:00 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
  • Tuesday 11.03. 09:45 - 11:15 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
  • Thursday 13.03. 11:30 - 13:00 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
  • Tuesday 18.03. 09:45 - 11:15 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
  • Thursday 20.03. 11:30 - 13:00 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
  • Tuesday 25.03. 09:45 - 11:15 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
  • Thursday 27.03. 11:30 - 13:00 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
  • Tuesday 01.04. 09:45 - 11:15 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
  • Thursday 03.04. 11:30 - 13:00 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
  • Tuesday 08.04. 09:45 - 11:15 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
  • Thursday 10.04. 11:30 - 13:00 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
  • Tuesday 29.04. 09:45 - 11:15 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
  • Tuesday 06.05. 09:45 - 11:15 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
  • Thursday 08.05. 11:30 - 13:00 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
  • Tuesday 13.05. 09:45 - 11:15 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
  • Thursday 15.05. 11:30 - 13:00 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
  • Tuesday 20.05. 09:45 - 11:15 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
  • Thursday 22.05. 11:30 - 13:00 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
  • Tuesday 27.05. 09:45 - 11:15 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
  • Tuesday 03.06. 09:45 - 11:15 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
  • Thursday 05.06. 11:30 - 13:00 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
  • Tuesday 10.06. 09:45 - 11:15 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
  • Thursday 12.06. 11:30 - 13:00 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
  • Tuesday 17.06. 09:45 - 11:15 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
  • Tuesday 24.06. 09:45 - 11:15 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5
  • Thursday 26.06. 11:30 - 13:00 Seminarraum 6 Hauptgebäude, Tiefparterre Stiege 9 Hof 5

Information

Aims, contents and method of the course

In this lecture, fundamental machine learning algorithms are implemented in Python and applied to natural language processing problems. The focus is on vector representations of texts, and the methods range from text classification with the perceptron algorithm, to word vectors, to simple neural networks.
Basic knowledge of Python or the willingness to learn it quickly is required (basic control and data structures, such as class definitions or dictionaries). The language of the lecture is English.

Assessment and permitted materials

During the semester, participants will have to hand in programming exercises and moodle assignments. There will be a written final exam at the end of the semester.

Minimum requirements and assessment criteria

A weighted average of the points achievable from programming exercises (weight: 20%), Moodle assignments (weight: 20%) and written final exam (weight: 60%) is calculated. The course is passed with 50% or more of the maximally achievable weighted average of points.

Examination topics

Knowledge of the algorithms and machine learning methods covered in the lecture, as well as their application and implementation covered in the exercise.

Reading list

“Marc Pilgrim: Dive into Python”
https://diveintopython3.problemsolving.io/

“Hal Daume: A course in machine learning”
Kapitel 4,5,7,10
http://ciml.info/

“Goldberg & Levy: word2vec Explained: deriving Mikolov et al.'s negative-sampling word-embedding method”
https://arxiv.org/abs/1402.3722

“Christopher Olah’s blog”
http://colah.github.io/

“Goodfellow et al.: Deep Learning”
(advanced)
https://www.deeplearningbook.org/

Association in the course directory

S-DH Cluster I: Language and Literature

Last modified: We 22.01.2025 10:25