180148 VO+UE Tools in Cognitive Science I: From computation and programming to human centric digital sciences (2024W)
Continuous assessment of course work
Labels
Preparation meeting: Tuesday October 1st, 2024, 9:00 - 11:00
HS 2i, NIG, Universitätsstrasse 7, 2nd floor
HS 2i, NIG, Universitätsstrasse 7, 2nd floor
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Su 15.09.2024 00:00 to Su 29.09.2024 23:59
- Deregistration possible until Th 31.10.2024 23:59
Details
max. 25 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Thursday 03.10. 13:15 - 16:30 Hörsaal 3B NIG 3.Stock
- Thursday 10.10. 13:15 - 16:30 Hörsaal 3B NIG 3.Stock
- Thursday 17.10. 13:15 - 16:30 Hörsaal 3B NIG 3.Stock
- Thursday 24.10. 13:15 - 16:30 Hörsaal 3B NIG 3.Stock
- Thursday 31.10. 13:15 - 16:30 Hörsaal 3B NIG 3.Stock
- Thursday 07.11. 13:15 - 16:30 Hörsaal 3B NIG 3.Stock
- Thursday 14.11. 13:15 - 16:30 Hörsaal 3B NIG 3.Stock
- Thursday 21.11. 13:15 - 16:30 Hörsaal 3B NIG 3.Stock
- N Thursday 28.11. 13:15 - 16:30 Hörsaal 3B NIG 3.Stock
- Thursday 05.12. 13:15 - 16:30 Hörsaal 3B NIG 3.Stock
- Thursday 12.12. 13:15 - 16:30 Hörsaal 3B NIG 3.Stock
- Thursday 09.01. 13:15 - 16:30 Hörsaal 3B NIG 3.Stock
- Thursday 16.01. 13:15 - 16:30 Hörsaal 3B NIG 3.Stock
- Thursday 23.01. 13:15 - 16:30 Hörsaal 3B NIG 3.Stock
- Thursday 30.01. 13:15 - 16:30 Hörsaal 3B NIG 3.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
The course will be graded on a basis of 100 points in total:• 100-87 points: Excellent (1)• 86-75 points: Good (2)• 74-63 points: Satisfactory (3)• 62-50 points: Sufficient (4)• 49-0 points: Unsatisfactory (5) (fail)
Minimum requirements and assessment criteria
Assessment criteria:• 10% Active participation• 25% Homework assignments and presentation (debriefing) of homework assignments • 50% In-class quizzes and final Exam 15% Final Project• A positive score (>50%) in each of the above criteria is required for passing the course.• Regular participation in at least 90% of sessions is obligatory.No materials or tools may be used or drawn upon during the quizzes and final exam
Examination topics
Exam questions will be based on what we discuss in class, the readings and the homework assignments.
Reading list
- Beecher, K. (2017). Computational Thinking: A beginner’s guide to problem-solving and programming (Illustrated edition). BCS, The Chartered Institute for IT.
- Bouras, A. S. (2019). Python and Algorithmic Thinking for the Complete Beginner (2nd Edition): Learn to Think Like a Programmer. Independently published.
- Farrell, S. (2018). Computational Modeling of Cognition and Behavior. Cambridge University Press.
- Curzon, P., & Mcowan, P. W. (2017). Power Of Computational Thinking, The: Games, Magic And Puzzles To Help You Become A Computational Thinker. WSPC.
- Jesús, S. D., & Martinez, D. (2020). Applied Computational Thinking with Python: Design algorithmic solutions for complex and challenging real-world problems. Packt Publishing.
- Maeda, J. (2019). How to Speak Machine: Computational Thinking for the Rest of Us. Portfolio.
- McKinney, W. (2017). Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython (2nd edition). O’Reilly UK Ltd.
- Miller, B. N., & Ranum, D. L. (2011). Problem Solving with Algorithms and Data Structures Using Python (002 edition). FRANKLIN BEEDLE & ASSOC.
- Zingaro, D. (2020). Algorithmic Thinking: A Problem-Based Introduction. No Starch Press.
- Géron, A. (2019). Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems (2nd ed edition). O’Reilly UK Ltd.Further literature will be announced in the course
- Bouras, A. S. (2019). Python and Algorithmic Thinking for the Complete Beginner (2nd Edition): Learn to Think Like a Programmer. Independently published.
- Farrell, S. (2018). Computational Modeling of Cognition and Behavior. Cambridge University Press.
- Curzon, P., & Mcowan, P. W. (2017). Power Of Computational Thinking, The: Games, Magic And Puzzles To Help You Become A Computational Thinker. WSPC.
- Jesús, S. D., & Martinez, D. (2020). Applied Computational Thinking with Python: Design algorithmic solutions for complex and challenging real-world problems. Packt Publishing.
- Maeda, J. (2019). How to Speak Machine: Computational Thinking for the Rest of Us. Portfolio.
- McKinney, W. (2017). Python for Data Analysis: Data Wrangling with Pandas, NumPy, and IPython (2nd edition). O’Reilly UK Ltd.
- Miller, B. N., & Ranum, D. L. (2011). Problem Solving with Algorithms and Data Structures Using Python (002 edition). FRANKLIN BEEDLE & ASSOC.
- Zingaro, D. (2020). Algorithmic Thinking: A Problem-Based Introduction. No Starch Press.
- Géron, A. (2019). Hands-on Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems (2nd ed edition). O’Reilly UK Ltd.Further literature will be announced in the course
Association in the course directory
Last modified: Tu 08.10.2024 15:06
• basic concepts and challenges of digital sciences
• basic concepts of computation
• analytical, systemic and algorithmic thinking
• applied problem-solving skills
• working knowledge of programming (using Python), skills related to programming and application of programming in cognitive science
• practical skills related to design, implementation, and evaluation of computer-based empirical experiments, data collection, representation, analysis, visualisation, etc.
• basic understanding of the role of computer science in cognitive science
• basic understanding of human-centric approaches in computer science as well as cognitive science
• basic understanding of ethics and accountability in computer science as well as cognitive science____ COVID 19 Updates ____Considering the current developments related to COVID-19, the course will be held partially (or entirely) online (depending on the situation).The decisions/updates and detailed instructions will be announced via Moodle platform or email.Most of (or maybe all of) the communications, lectures, assignments, presentations, group-works, projects, evaluations, and exams will be done online.– Course mode:
–– Mixed/hybrid (online + in-person) or fully online– Teaching/learning methods:
– – Virtual/in-person synchronous course units,
– – Self-study with literature and online resources,
– – Virtual/in-person group-works,
– – Online/in-person exams,
– – Online/in-person presentations,
– – Virtual/in-person coaching/supervision sessions (if needed)
– – ...– Students are expected to participate in announced online/in-person sessions, online/in-person presentations, online/in-person exams, etc.
– Students are expected to construct private virtual communication means for their virtual group works.
– Students are expected to regularly check their emails as well as the course Moodle environment.
– Students are expected to follow all detailed instructions related to remote/in-person teaching.
– The assessments will be based on the regular assessment plans.