Universität Wien FIND

180216 VO-L On Kant's metaphysical foundations of natural science (2019W)

The Concept of Nature

5.00 ECTS (2.00 SWS), SPL 18 - Philosophie

Registration/Deregistration

Details

Language: German

Lecturers

Classes (iCal) - next class is marked with N

Beginn am 10. Oktober 2019; jeweils 2UE wö
Ende: 24. Januar 2020
Erster Prüfungstermin: 30.01.2020
Termine: Oktober, 10., 17, 24., 31.
November: 7., 14., 21., 28.
Dezember: 5., 12.
Januar: 9., 16., 23.
Prüfung (erster Termin, weitere Termine werden vereinbart bzw. bekanntgegeben)

Thursday 10.10. 13:15 - 14:45 Hörsaal 3D, NIG Universitätsstraße 7/Stg. III/3. Stock, 1010 Wien
Thursday 17.10. 13:15 - 14:45 Hörsaal 3D, NIG Universitätsstraße 7/Stg. III/3. Stock, 1010 Wien
Thursday 24.10. 13:15 - 14:45 Hörsaal 3D, NIG Universitätsstraße 7/Stg. III/3. Stock, 1010 Wien
Thursday 31.10. 13:15 - 14:45 Hörsaal 3D, NIG Universitätsstraße 7/Stg. III/3. Stock, 1010 Wien
Thursday 07.11. 13:15 - 14:45 Hörsaal 3D, NIG Universitätsstraße 7/Stg. III/3. Stock, 1010 Wien
Thursday 14.11. 13:15 - 14:45 Hörsaal 3D, NIG Universitätsstraße 7/Stg. III/3. Stock, 1010 Wien
Thursday 21.11. 13:15 - 14:45 Hörsaal 3D, NIG Universitätsstraße 7/Stg. III/3. Stock, 1010 Wien
Thursday 28.11. 13:15 - 14:45 Hörsaal 3D, NIG Universitätsstraße 7/Stg. III/3. Stock, 1010 Wien
Thursday 05.12. 13:15 - 14:45 Hörsaal 3D, NIG Universitätsstraße 7/Stg. III/3. Stock, 1010 Wien
Thursday 09.01. 13:15 - 14:45 Hörsaal 3D, NIG Universitätsstraße 7/Stg. III/3. Stock, 1010 Wien
Thursday 16.01. 13:15 - 14:45 Hörsaal 3D, NIG Universitätsstraße 7/Stg. III/3. Stock, 1010 Wien
Thursday 23.01. 13:15 - 14:45 Hörsaal 3D, NIG Universitätsstraße 7/Stg. III/3. Stock, 1010 Wien
Thursday 30.01. 13:15 - 14:45 Hörsaal 3D, NIG Universitätsstraße 7/Stg. III/3. Stock, 1010 Wien

Information

Aims, contents and method of the course

After Kant’s dictum in the Preface of Metaphysical Foundations of Natural Science“in any special doctrine of nature there can be only as much proper science as there is mathematics therein.“* (A IX) After introducing the distinction between a philosophy of nature and a pure doctrine of nature (a determination of causality as connectedness of matter), K. states in the same context: “And, since in any doctrine of nature there is only as much proper science as there is a priori knowledge therein, a doctrine of nature will contain only as much proper science as there is mathematics capable of application there.”* In trying to spell out the notion “capable of application”, recent commentators have failed to exploit the difference between intuition and sensation. Consequently, a focus on but extensive quantity has conditioned the discussion. What is said in Phoronomy about the composition of motions (systems of bodies) as well as in Proposition 8. of the Dynamics, is textual evidence for a conception of mathematical applicability from the point of view of intensive quantity and the second mathematical Grundsatz (KrV B 208).

Assessment and permitted materials

Written Exam (it will be asked to answer at least 4 of 7 presented questions; 2 questions are going to concern the methods of interpretations that have been dealt with ad explained in the course of the lecture; 3 questions will hinge on the argumentative structures of the work, as they will have been exposed and analysed in the semester; 2 questions on the historical context of the work (Euler, Leibniz, Bošković as well as Lambert.)

Minimum requirements and assessment criteria

Completion of the written exam, participation in the lesson and close reading of the literature.

Examination topics

The content of the lecture and close reading of at least 3 texts (two source texts and one paper from the literature list)

Reading list

DiSalle, Robert, The transcendental method from Newton to Kant. In: Studies in History and Philosophy of Science 44 (2013) 448–456
Friedman, Michael, Kant on Geometry and Spatial Intuition. In: Synthese, Vol. 186, Nr 1, Diagrams in Mathematics: History and Philosophy. Springer 2002 (2002a)
Derselbe, Kant, Kuhn and the Rationality of Science. In: Heidelberger, M. / Stadler, Fr. (Hrsgg.) History of Philosophy of Science: New Trends and New Perspectives. Dordrecht: Kluwer 2002 (2002b)
Derselbe, Einstein, Kant and the Relativized A Priori. In: Bitbol, M et al. (Hrsgg.), Constituting Objectivity. Springer 2009
Graneau, Paul / Graneau, Neal, Machian Inertia and the Isotropic Universe. In: General
Relativity & Gravitation, vol. 35(5), p. 751-770, 2003.
Dieselben, In the Grip of the distant Universe. The Science of Inertia. World Scientific
Publishing, NJ. 2006
Kant, Immanuel (1900 ff), Gesammelte Schriften „Akademieausgabe“, Königlich Preußische Akademie der Wissenschaften, Berlin 1900ff. Seit 1922
De Gruyter. S. auch: https://korpora.zim.uni-duisburg-essen.de/Kant/verzeichnisse-gesamt.html (last retrieve Aug. 15th 2018)
Kant, Immanuel (1991), Schriften zur Naturphilosophie. Werkausgabe Bd IX.
(Suhrkamp TW, Hrsg. Weischedel W., Frankfurt/M 1991, 1968
Erstausg.)
Lawvere, W. / Schanuel, St., Conceptual Mathematics. A first Introduction to Categories. CUP 1997 (erste Aufl. Buffalo 1991)
Seebohm, Thomas (2013), Kants Theorie einer eigentlich rationalen Naturwissenschaft und die “Revolutionen” der Mathematik und der Physik im 19. und 20. Jahrhundert. In: Das Leben der Vernunft: Beiträge zur Philosophie Kants (pp. 189–207). Hrsgg. Hüning, Dieter / Klingner, Stefan / Olk, Carsten
Stan, Marius, Kant’s third Law of Mechanics: The long Shadow of Leibniz. In: Studies in the History and Philosophy of Science 44 (2013)
Watkins, Eric, The Laws of Motions from Newton to Kant. Perspectives on Science 1997, Vol 5, No. 3 (UCP)

Association in the course directory

Last modified: Tu 08.10.2019 16:48