Universität Wien

200140 SE Advanced Seminar: Mind and Brain (2020W)

Cognitive Modeling in Python

4.00 ECTS (2.00 SWS), SPL 20 - Psychologie
Continuous assessment of course work

Vertiefungsseminare können nur fürs Pflichtmodul B verwendet werden! Eine Verwendung fürs Modul A4 Freie Fächer ist nicht möglich.

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

max. 20 participants
Language: English

Lecturers

Classes (iCal) - next class is marked with N

The seven theoretical/discussion sessions will take place in person if the Covid situation allows (Dates: 06.10; 20.10; 03.11; 17.11; 01.12; 12.01.2021; 26.01.2021).
The six practical sessions (every second class on 13.10; 27.10; 10.11 ;24.11; 15.12; 19.01.2021) will take place remotely for sure.

  • Tuesday 06.10. 09:45 - 11:15 Hörsaal D Psychologie, NIG 6.Stock A0624
  • Tuesday 13.10. 09:45 - 11:15 Hörsaal D Psychologie, NIG 6.Stock A0624
  • Tuesday 20.10. 09:45 - 11:15 Hörsaal D Psychologie, NIG 6.Stock A0624
  • Tuesday 27.10. 09:45 - 11:15 Hörsaal D Psychologie, NIG 6.Stock A0624
  • Tuesday 03.11. 09:45 - 11:15 Hörsaal D Psychologie, NIG 6.Stock A0624
  • Tuesday 10.11. 09:45 - 11:15 Hörsaal D Psychologie, NIG 6.Stock A0624
  • Tuesday 17.11. 09:45 - 11:15 Hörsaal D Psychologie, NIG 6.Stock A0624
  • Tuesday 24.11. 09:45 - 11:15 Hörsaal D Psychologie, NIG 6.Stock A0624
  • Tuesday 01.12. 09:45 - 11:15 Hörsaal D Psychologie, NIG 6.Stock A0624
  • Tuesday 15.12. 09:45 - 11:15 Hörsaal D Psychologie, NIG 6.Stock A0624
  • Tuesday 12.01. 09:45 - 11:15 Hörsaal D Psychologie, NIG 6.Stock A0624
  • Tuesday 19.01. 09:45 - 11:15 Hörsaal D Psychologie, NIG 6.Stock A0624
  • Tuesday 26.01. 09:45 - 11:15 Hörsaal D Psychologie, NIG 6.Stock A0624

Information

Aims, contents and method of the course

The aim of this course is to introduce students to the main modelling approaches used in Cognitive Psychology and Neuroscience with a focus on decisions-making and visual perception.
The hybrid format will consist of -if possible- in person lectures and remote Python programming tutorials alternating weekly, where a lecture is followed by related tutorial the week after.
Students are expected to prepare with reading a research paper and writing a short reading summary for each lecture. Students will work remotely on the tutorials, but will receive help and feedback during the sessions, with virtual intros/summaries. Experience with Python programming is not required but very helpful.

Assessment and permitted materials

1. Reading summary for each lecture (30%)
2. Programming tutorials (40%)
3. Final project (coding or essay, 30%)

Minimum requirements and assessment criteria

-Detailed requirements will be given in class.
Minimum requirements are class attendance with maximum of two missed sessions (without special arrangement made with the lecturer before a missed class).

Examination topics

There is no exam, evaluation based on the tutorials, reading summaries and the final project.

Reading list

Research papers:
L Griffiths, T., Kemp, C., & B Tenenbaum, J. (2008). Bayesian models of cognition.

Blohm, G., Kording, K. P., & Schrater, P. R. (2020). A how-to-model guide for Neuroscience. Eneuro, 7(1).

Richards, B. A., Lillicrap, T. P., Beaudoin, P., Bengio, Y., Bogacz, R., Christensen, A., ... & Gillon, C. J. (2019). A deep learning framework for neuroscience. Nature neuroscience, 22(11), 1761-1770.

Sinz, F. H., Pitkow, X., Reimer, J., Bethge, M., & Tolias, A. S. (2019). Engineering a less artificial intelligence. Neuron, 103(6), 967-979.

Niv, Y., & Langdon, A. (2016). Reinforcement learning with Marr. Current opinion in behavioral sciences, 11, 67-73.

Ratcliff, R., & McKoon, G. (2008). The diffusion decision model: theory and data for two-choice decision tasks. Neural computation, 20(4), 873-922.

Optional textbook:
Frisby, J. P., & Stone, J. V. (2010). Seeing: The computational approach to biological vision. The MIT Press.

Association in the course directory

Last modified: Th 24.09.2020 12:09