200144 SE Seminar in Applied Psychology: Mind and Brain (2025W)
Introduction to Scientific Computing in Social Sciences
Continuous assessment of course work
Labels
Anwendungsseminare können nur fürs Pflichtmodul B verwendet werden! Eine Verwendung fürs Modul A4 Freie Fächer ist nicht möglich.
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 01.09.2025 09:00 to Th 25.09.2025 09:00
- Deregistration possible until We 01.10.2025 09:00
Details
max. 20 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 07.10. 13:15 - 14:45 PCR Computerhörsaal Psychologie, NIG 6.Stock A0607
- Tuesday 14.10. 13:15 - 14:45 PCR Computerhörsaal Psychologie, NIG 6.Stock A0607
- Tuesday 21.10. 13:15 - 14:45 PCR Computerhörsaal Psychologie, NIG 6.Stock A0607
- Tuesday 28.10. 13:15 - 14:45 PCR Computerhörsaal Psychologie, NIG 6.Stock A0607
- Tuesday 04.11. 13:15 - 14:45 PCR Computerhörsaal Psychologie, NIG 6.Stock A0607
- Tuesday 11.11. 13:15 - 14:45 PCR Computerhörsaal Psychologie, NIG 6.Stock A0607
- Tuesday 18.11. 13:15 - 14:45 PCR Computerhörsaal Psychologie, NIG 6.Stock A0607
- Tuesday 25.11. 13:15 - 14:45 PCR Computerhörsaal Psychologie, NIG 6.Stock A0607
- N Tuesday 02.12. 13:15 - 14:45 PCR Computerhörsaal Psychologie, NIG 6.Stock A0607
- Tuesday 09.12. 13:15 - 14:45 PCR Computerhörsaal Psychologie, NIG 6.Stock A0607
- Tuesday 16.12. 13:15 - 14:45 PCR Computerhörsaal Psychologie, NIG 6.Stock A0607
- Tuesday 13.01. 13:15 - 14:45 PCR Computerhörsaal Psychologie, NIG 6.Stock A0607
- Tuesday 20.01. 13:15 - 14:45 PCR Computerhörsaal Psychologie, NIG 6.Stock A0607
- Tuesday 27.01. 13:15 - 14:45 PCR Computerhörsaal Psychologie, NIG 6.Stock A0607
Information
Aims, contents and method of the course
In this course students will learn how to use natural language processing tools to automatically analyze the content of large numbers of texts. After this course students will be able to perform sentiment analyses of modern textual sources from the internet but also of historical sources such as fiction work (movies and books) from the past. Students will be able to quantify the temporal change of values and preferences expressed in these textual sources and its relationship to historical events. BASIC KNOWLEDGE OF PYTHON AND R are highly recommended.
Assessment and permitted materials
Class homework assignments, including 3 small assignments (3 x 20%) and a final project (40%) (Individual)
Minimum requirements and assessment criteria
Students must at least demonstrate conceptual knowledge and understanding of the tools and processes used in computational social sciences. They must be able to conceptualize a project using these tools and present this conceptualization in an oral presentation. Grades improve if students are also able to implement these projects using provided (or custom) scripts in Python and R programming languages, or other computational social sciences tools.
Examination topics
Preprocessing text
Creating datasets with pandas, word clouds
Sentiment Analysis (lexical and machine learning)
Webscrapping; reading html
Using selenium to interact with websites
Using APIs to collect information from the web
The Bag of words approach (LIWC, WordNet, GPT)
Plot diachronic trends with seaborn
Annotate texts with GPT
Creating datasets with pandas, word clouds
Sentiment Analysis (lexical and machine learning)
Webscrapping; reading html
Using selenium to interact with websites
Using APIs to collect information from the web
The Bag of words approach (LIWC, WordNet, GPT)
Plot diachronic trends with seaborn
Annotate texts with GPT
Reading list
Harvard python course:
- https://www.youtube.com/watch?v=nLRL_NcnK-4&t=7492sComputational social science courses:
- https://ayoubbagheri.nl/applied_tm/
- https://github.com/JanaLasser/SICSS-aachen-graz
- http://digitalmedia.andreasjungherr.de/docs/intro.html
- Engel, U., Quan-Haase, A., Liu, S., & Lyberg, L. (Eds.). (2021). Handbook of Computational Social Science, Volume 2: Data Science, Statistical Modelling, and Machine Learning Methods (1st ed.). Routledge. https://doi.org/10.4324/9781003025245Historical Psychology:
- Martins & Baumard (2022). How to develop reliable instruments to measure the cultural evolution of preferences and feelings in history? Frontiers in Psychology (13) https://osf.io/acukm/
- https://www.youtube.com/watch?v=nLRL_NcnK-4&t=7492sComputational social science courses:
- https://ayoubbagheri.nl/applied_tm/
- https://github.com/JanaLasser/SICSS-aachen-graz
- http://digitalmedia.andreasjungherr.de/docs/intro.html
- Engel, U., Quan-Haase, A., Liu, S., & Lyberg, L. (Eds.). (2021). Handbook of Computational Social Science, Volume 2: Data Science, Statistical Modelling, and Machine Learning Methods (1st ed.). Routledge. https://doi.org/10.4324/9781003025245Historical Psychology:
- Martins & Baumard (2022). How to develop reliable instruments to measure the cultural evolution of preferences and feelings in history? Frontiers in Psychology (13) https://osf.io/acukm/
Association in the course directory
Last modified: Tu 14.10.2025 10:46