Warning! The directory is not yet complete and will be amended until the beginning of the term.
200233 SE Theory and Empirical Research (Mind and Brain) 1 (2021W)
Continuous assessment of course work
Labels
MIXED
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from We 01.09.2021 07:00 to Th 23.09.2021 07:00
- Deregistration possible until Mo 04.10.2021 07:00
Details
max. 20 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
TEWA 1: Scientific Computing in Python for Cognitive Psychology
22 November - 12 Dezember Online format!This course will take place in a hybrid format, however, in person presence is preferred, and remote attendance is only a back-up option, that will require extra work.- Monday 04.10. 15:00 - 16:30 Hörsaal B Psychologie, NIG 6.Stock A0610
- Wednesday 06.10. 11:30 - 13:00 Hörsaal B Psychologie, NIG 6.Stock A0610
- Monday 11.10. 15:00 - 16:30 Hörsaal B Psychologie, NIG 6.Stock A0610
- Wednesday 13.10. 11:30 - 13:00 Hörsaal B Psychologie, NIG 6.Stock A0610
- Monday 18.10. 15:00 - 16:30 Hörsaal B Psychologie, NIG 6.Stock A0610
- Wednesday 20.10. 11:30 - 13:00 Hörsaal B Psychologie, NIG 6.Stock A0610
- Monday 25.10. 15:00 - 16:30 Hörsaal B Psychologie, NIG 6.Stock A0610
- Wednesday 27.10. 11:30 - 13:00 Hörsaal B Psychologie, NIG 6.Stock A0610
- Wednesday 03.11. 11:30 - 13:00 Hörsaal B Psychologie, NIG 6.Stock A0610
- Monday 08.11. 15:00 - 16:30 Hörsaal B Psychologie, NIG 6.Stock A0610
- Wednesday 10.11. 11:30 - 13:00 Hörsaal B Psychologie, NIG 6.Stock A0610
- Monday 15.11. 15:00 - 16:30 Hörsaal B Psychologie, NIG 6.Stock A0610
- Wednesday 17.11. 11:30 - 13:00 Hörsaal B Psychologie, NIG 6.Stock A0610
- Monday 22.11. 15:00 - 16:30 Hörsaal B Psychologie, NIG 6.Stock A0610
- Wednesday 24.11. 11:30 - 13:00 Hörsaal B Psychologie, NIG 6.Stock A0610
- Monday 29.11. 15:00 - 16:30 Hörsaal B Psychologie, NIG 6.Stock A0610
- Wednesday 01.12. 11:30 - 13:00 Hörsaal B Psychologie, NIG 6.Stock A0610
- Monday 06.12. 15:00 - 16:30 Hörsaal B Psychologie, NIG 6.Stock A0610
- Monday 13.12. 15:00 - 16:30 Hörsaal B Psychologie, NIG 6.Stock A0610
- Wednesday 15.12. 11:30 - 13:00 Hörsaal B Psychologie, NIG 6.Stock A0610
- Monday 10.01. 15:00 - 16:30 Hörsaal B Psychologie, NIG 6.Stock A0610
- Wednesday 12.01. 11:30 - 13:00 Hörsaal B Psychologie, NIG 6.Stock A0610
- Monday 17.01. 15:00 - 16:30 Hörsaal B Psychologie, NIG 6.Stock A0610
- Wednesday 19.01. 11:30 - 13:00 Hörsaal B Psychologie, NIG 6.Stock A0610
- Monday 24.01. 15:00 - 16:30 Hörsaal B Psychologie, NIG 6.Stock A0610
- Wednesday 26.01. 11:30 - 13:00 Hörsaal B Psychologie, NIG 6.Stock A0610
- Monday 31.01. 15:00 - 16:30 Hörsaal B Psychologie, NIG 6.Stock A0610
Information
Aims, contents and method of the course
Assessment and permitted materials
Discussion participation and small theory homeworks: 25%
Tutorial participation and coding homeworks: 50%
Final Project: 25%
Tutorial participation and coding homeworks: 50%
Final Project: 25%
Minimum requirements and assessment criteria
Active participation in class and programming tutorials.[Assessment criteria]
1: >87%
2: 76 - 87%
3: 64 - 75%
4: 51 - 63%
5: <=50%
1: >87%
2: 76 - 87%
3: 64 - 75%
4: 51 - 63%
5: <=50%
Examination topics
Able to use Python for basic data analysis and visualization tasksUnderstands resampling methods for statistical analysis and can implement it in codeUnderstands the use of random simulations for data analysisUnderstands basic linear regression, and how it is related to more advanced regression modelsUnderstands the main concepts of Signal Detection theoryFamiliar with the main tools of machine learning
Reading list
Books:Introduction to Modern Statistics (2021): https://openintro-ims.netlify.app/index.html
Think Bayes 2: http://allendowney.github.io/ThinkBayes2/index.htmlGelman, Hill, Vethari (2021): Regression and Other StoriesStatistical Thinking for the 21st Century:
https://statsthinking21.github.io/statsthinking21-core-site/Papers:Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory measures. Behavior research methods, instruments, & computers, 31(1), 137-149.Le Meur, O., & Baccino, T. (2013). Methods for comparing scanpaths and saliency maps: strengths and weaknesses. Behavior research methods, 45(1), 251-266.Daw, N. D. (2011). Trial-by-trial data analysis using computational models. Decision making, affect, and learning: Attention and performance XXIII, 23(1).Körding, K. P., & Wolpert, D. M. (2004). Bayesian integration in sensorimotor learning. Nature, 427(6971), 244-247.
Think Bayes 2: http://allendowney.github.io/ThinkBayes2/index.htmlGelman, Hill, Vethari (2021): Regression and Other StoriesStatistical Thinking for the 21st Century:
https://statsthinking21.github.io/statsthinking21-core-site/Papers:Stanislaw, H., & Todorov, N. (1999). Calculation of signal detection theory measures. Behavior research methods, instruments, & computers, 31(1), 137-149.Le Meur, O., & Baccino, T. (2013). Methods for comparing scanpaths and saliency maps: strengths and weaknesses. Behavior research methods, 45(1), 251-266.Daw, N. D. (2011). Trial-by-trial data analysis using computational models. Decision making, affect, and learning: Attention and performance XXIII, 23(1).Körding, K. P., & Wolpert, D. M. (2004). Bayesian integration in sensorimotor learning. Nature, 427(6971), 244-247.
Association in the course directory
Last modified: Sa 20.11.2021 09:08
The first part of the course will be a general introduction to Python and the most important libraries for data analysis: numpy, scipy, matplotlib, pandas.
The second part of the course will focus on general data science methods (statistical inference with resampling methods, regression models, machine learning).
The final part of the course will apply the previously learned programming on the analysis of behavioral data, with a focus on eye-movements and perceptual decision-making.
While the focus of the course will be on the practical and programming aspects, we will also discuss the theoretical relevance of these topics for cognitive science.
Monday classes will focus on theory, with programming tutorials on Wednesdays.