210015 UE BAK 4 Quantitative Methods of Empirical Social Research (2021W)
(engl.)
Continuous assessment of course work
Labels
MIXED
Eine Anmeldung über u:space innerhalb der Anmeldephase ist erforderlich! Eine nachträgliche Anmeldung ist NICHT möglich.
Studierende, die der ersten Einheit unentschuldigt fernbleiben, verlieren ihren Platz in der Lehrveranstaltung.Achten Sie auf die Einhaltung der Standards guter wissenschaftlicher Praxis und die korrekte Anwendung der Techniken wissenschaftlichen Arbeitens und Schreibens.
Plagiierte und erschlichene Teilleistungen führen zur Nichtbewertung der Lehrveranstaltung (Eintragung eines 'X' im Sammelzeugnis).
Die Lehrveranstaltungsleitung kann Studierende zu einem notenrelevanten Gespräch über erbrachte Teilleistungen einladen.
Studierende, die der ersten Einheit unentschuldigt fernbleiben, verlieren ihren Platz in der Lehrveranstaltung.Achten Sie auf die Einhaltung der Standards guter wissenschaftlicher Praxis und die korrekte Anwendung der Techniken wissenschaftlichen Arbeitens und Schreibens.
Plagiierte und erschlichene Teilleistungen führen zur Nichtbewertung der Lehrveranstaltung (Eintragung eines 'X' im Sammelzeugnis).
Die Lehrveranstaltungsleitung kann Studierende zu einem notenrelevanten Gespräch über erbrachte Teilleistungen einladen.
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 06.09.2021 08:00 to Mo 20.09.2021 08:00
- Registration is open from We 22.09.2021 08:00 to We 29.09.2021 08:00
- Deregistration possible until Fr 22.10.2021 23:59
Details
max. 35 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
-
Wednesday
06.10.
15:00 - 16:30
Class Room 3 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-25
Hybride Lehre -
Wednesday
13.10.
15:00 - 16:30
Class Room 3 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-25
Hybride Lehre -
Wednesday
20.10.
15:00 - 16:30
Class Room 3 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-25
Hybride Lehre -
Wednesday
27.10.
15:00 - 16:30
Class Room 3 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-25
Hybride Lehre -
Wednesday
03.11.
15:00 - 16:30
Class Room 3 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-25
Hybride Lehre -
Wednesday
10.11.
15:00 - 16:30
Class Room 3 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-25
Hybride Lehre -
Wednesday
17.11.
15:00 - 16:30
Class Room 3 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-25
Hybride Lehre -
Wednesday
24.11.
15:00 - 16:30
Class Room 3 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-25
Hybride Lehre -
Wednesday
01.12.
15:00 - 16:30
Class Room 3 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-25
Hybride Lehre -
Wednesday
15.12.
15:00 - 16:30
Class Room 3 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-25
Hybride Lehre -
Wednesday
12.01.
15:00 - 16:30
Class Room 3 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-25
Hybride Lehre -
Wednesday
19.01.
15:00 - 16:30
Class Room 3 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-25
Hybride Lehre -
Wednesday
26.01.
15:00 - 16:30
Class Room 3 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-25
Hybride Lehre
Information
Aims, contents and method of the course
Assessment and permitted materials
The final assessment will be based on the following components:
(1) Participation (10% of final grade) Regular attendance in class (maximum 2 classes can be missed)
(2) Four homework assignments (25% of final grade) based on materials in the course texts. Students are encouraged to form study groups but assignments must be completed individually.
(3) A mid-term exam before Christmas (25% of final grade). The test will concern theoretical questions and/or interpretation of R output. Duration: max 45 minutes.
(4) Final assignment (40% of final grade). At the end of the course, you will be required to write a final paper of 2000-2500 words, focusing mostly on methods with applications in R. Joint work is NOT allowed for the final assignment.
(1) Participation (10% of final grade) Regular attendance in class (maximum 2 classes can be missed)
(2) Four homework assignments (25% of final grade) based on materials in the course texts. Students are encouraged to form study groups but assignments must be completed individually.
(3) A mid-term exam before Christmas (25% of final grade). The test will concern theoretical questions and/or interpretation of R output. Duration: max 45 minutes.
(4) Final assignment (40% of final grade). At the end of the course, you will be required to write a final paper of 2000-2500 words, focusing mostly on methods with applications in R. Joint work is NOT allowed for the final assignment.
Minimum requirements and assessment criteria
In order to complete the course with a positive grade students have to attempt all seminar parts.
Students are allowed to miss two classes.
The software turnitin will be used to check plagiarism90-100 = 1. Excellent
80-89 = 2. Good
70-79 = 3. Satisfactory
60-69 = 4. Sufficient
< 60 = 5. Fail
Students are allowed to miss two classes.
The software turnitin will be used to check plagiarism90-100 = 1. Excellent
80-89 = 2. Good
70-79 = 3. Satisfactory
60-69 = 4. Sufficient
< 60 = 5. Fail
Examination topics
The examination will focus on different statistical concepts covered in class and will include basic data analysis using the programming language R. Detailed instructions about the homework assignments and the final assignment will be posted on Moodle in due time.The final paper is due on February 16th 2022
Reading list
The following readings are required - please consider buying:
- Alan Agresti (2018). Statistical methods for the social sciences (5th edition). New Jersey: Pearson Education International
- Alan Agresti (2018). Statistical methods for the social sciences (5th edition). New Jersey: Pearson Education International
Association in the course directory
Last modified: Fr 12.05.2023 00:19
Students will learn the basic “tools” to conduct quantitative data analysis using the programming language R. By the end of the course, students should be able to describe and manipulate a dataset and conduct basic inferential analysis R.
Students who wish to complete the course online are free to do so, but I will strive to create opportunities for in-presence trouble-shooting.