210219 SE Diss, H: Testing Causal Hypotheses in Social Sciences (2008W)
Continuous assessment of course work
Labels
Persönliche Anmeldung NUR über das Fakultätszentrum für Methoden der Sozialwissenschaften via mail an alexandra.winkler@univie.ac.atFür die Studienrichtung Politikwissenschaft sind 8 Plätze vorgesehen.
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Sa 27.09.2008 08:00 to We 01.10.2008 22:00
- Registration is open from Th 02.10.2008 22:00 to Fr 03.10.2008 22:00
- Deregistration possible until Fr 03.10.2008 22:00
Details
max. 40 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 07.10. 14:15 - 17:30 Hörsaal 16 Hauptgebäude, Hochparterre, Stiege 5
- Wednesday 08.10. 08:00 - 11:00 Hörsaal 16 Hauptgebäude, Hochparterre, Stiege 5
- Friday 10.10. 15:15 - 18:15 Hörsaal 16 Hauptgebäude, Hochparterre, Stiege 5
- Wednesday 15.10. 10:45 - 13:45 Hörsaal 16 Hauptgebäude, Hochparterre, Stiege 5
- Thursday 16.10. 14:15 - 17:45 Hörsaal 16 Hauptgebäude, Hochparterre, Stiege 5
- Friday 17.10. 08:00 - 10:45 Hörsaal 16 Hauptgebäude, Hochparterre, Stiege 5
- Tuesday 21.10. 14:15 - 17:15 Hörsaal 16 Hauptgebäude, Hochparterre, Stiege 5
- Wednesday 22.10. 08:00 - 10:45 Hörsaal 16 Hauptgebäude, Hochparterre, Stiege 5
- Thursday 23.10. 14:15 - 17:45 Hörsaal 16 Hauptgebäude, Hochparterre, Stiege 5
- Tuesday 28.10. 14:15 - 17:30 Hörsaal 16 Hauptgebäude, Hochparterre, Stiege 5
- Wednesday 29.10. 17:00 - 20:00 Hörsaal 16 Hauptgebäude, Hochparterre, Stiege 5
- Thursday 30.10. 14:15 - 17:30 Hörsaal 16 Hauptgebäude, Hochparterre, Stiege 5
Information
Aims, contents and method of the course
Assessment and permitted materials
Minimum requirements and assessment criteria
The course will be given from October 6 till October 25. There will be three meetings of 3 hours of which two will be reserved for lectures and one for a joint research project. The purpose is that the participant are able after the course to formulate and analyze causal models in a proper way. For this a practical exercise is necessary.
Examination topics
Reading list
Saris W.E. and H. Stronkhorst (1984) Causal modeling in nonexperimental research: An
introduction to the LISREL approach. Amsterdam. Sociometric Research Foundation.
Saris W.E. and I.N. Gallhofer (2007) Design, evaluation and analysis of questionnaires of surveys
research. Wiley
For statistically advanced people
Bollen K.A. (1989) Structural Equations with latent variables. New York, Wiley
introduction to the LISREL approach. Amsterdam. Sociometric Research Foundation.
Saris W.E. and I.N. Gallhofer (2007) Design, evaluation and analysis of questionnaires of surveys
research. Wiley
For statistically advanced people
Bollen K.A. (1989) Structural Equations with latent variables. New York, Wiley
Association in the course directory
Last modified: Mo 07.09.2020 15:38
After this general introduction of the SEM approach we will introduce a general model for structural equations which is a combination of an econometric simultaneous equation model and a factor analysis model. This general model allows the specification, estimation and testing of all known linear structural equation models discussed in the context of multivariate statistics. Specifications of this general model are the following models: regression models, simultaneous equation models, the canonical correlation model or mimic model, longitudinal models like the test retest, or simplex and quasi simplex models, time series models, factor models, measurement models, general structural equation models for latent variables and multiple group models for cross cultural research and other applications.
Often the observed variables contain measurement errors and systematic errors because the observed variables are not only effected by the variables they are supposed to measure but also by other variables. Structural equation modeling is especially developed to cope with the problem of measurement error. Therefore special attention will be paid to estimation of measurement errors, index construction and the analysis of data correcting for measurement errors.