220061 UE METH: UE STADA Statistical Data Analysis (2023S)
Labels
Summary
Registration/Deregistration
- Registration is open from Mo 20.02.2023 09:00 to We 22.02.2023 18:00
- Deregistration possible until Fr 31.03.2023 23:59
Groups
Group 1
Lecturers
Classes (iCal) - next class is marked with N
Stand heute (11.01.2023) wird die Übung präsent abgehalten. Informationen zum Ablauf der Lehrveranstaltung im Sommersemester 2023 erhalten alle korrekt angemeldeten Studierenden rechtzeitig per E-Mail.
Im Falle von digitaler Lehre bzw. hybrider Lehre bleiben die Ziele und Inhalte der Lehrveranstaltung unverändert. Methodisch kommen verschiedene Übungsaktivitäten via Moodle zum Einsatz. Ergänzend können einzelne Gruppenarbeiten in einem Online-Live-Setting stattfinden.
- Thursday 30.03. 09:45 - 13:15 Seminarraum 6, Kolingasse 14-16, EG00
- Friday 31.03. 09:45 - 13:15 Seminarraum 6, Kolingasse 14-16, EG00
- Saturday 01.04. 09:45 - 13:15 Seminarraum 6, Kolingasse 14-16, EG00
Aims, contents and method of the course
Assessment and permitted materials
60% homework (25% for the first homework, 35% for the second homework)
40% participation in classesTo receive a positive grade, both homework assignments must be submitted and an average of 50% of the total points must be achieved.In case the semester will take place in the form of remote learning, content and aims of the course remain unchanged.The course will be taught in English. Assignments will be accepted in English and German.
Minimum requirements and assessment criteria
50.0 – 62.9% Sufficient
63.0 – 74.9% Satisfactory
75.0 – 86.9% Good
87.0 - 100% Excellent
Examination topics
- Interpretation of own and others’ results
- Descriptive Statistics
- Data handling
- Mean comparison (t-test)
- Chi-Square Test
- Correlation
- Simple and multiple linear regression
Reading list
Group 2
Lecturers
Classes (iCal) - next class is marked with N
- Thursday 16.03. 13:15 - 14:45 Lehrredaktion Publizistik, Währinger Straße 29 2.OG
- Thursday 30.03. 13:15 - 14:45 Lehrredaktion Publizistik, Währinger Straße 29 2.OG
- Thursday 27.04. 13:15 - 14:45 Lehrredaktion Publizistik, Währinger Straße 29 2.OG
- Thursday 11.05. 13:15 - 14:45 Lehrredaktion Publizistik, Währinger Straße 29 2.OG
- Thursday 01.06. 13:15 - 14:45 Lehrredaktion Publizistik, Währinger Straße 29 2.OG
- Thursday 22.06. 13:15 - 14:45 Lehrredaktion Publizistik, Währinger Straße 29 2.OG
Aims, contents and method of the course
• perform simple calculations and statistical analyses
• represent simple data in the appropriate graphical form
• interpret and critically evaluate statistical analyses and results
• communicate findings orally and in writing
• apply gained knowledge to conduct their own studies
Assessment and permitted materials
(2) Home Assignment 2 – 35%
(3) Participation - In-class Exercises, Discussion – 40%
Minimum requirements and assessment criteria
• Attendance is obligatory for 75% of the time. You may miss a maximum of one class (students are allowed to miss a maximum of one class).
• The seminar is planned as in-person class – this is a subject to change based on the development in the future and the university recommendations.
• Both home assignments must be submitted in order to complete the course. Home assignments must be done individually and not in a group.Grading:
• 0 - 49,9 % - Unsatisfactisfactory (5)
• 50 - 62.9 % - Sufficient (4)
• 63 - 74.9 % - Satisfactory (3)
• 75 - 86,9 % - Good (2)
• 87 - 100 % - Excellent (1)
Examination topics
Descriptive statistics (central tendency, dispersion)
Data handling in SPSS
Hypothesis testing and T-tests
Chi-square test and correlation
Linear and multiple regression
Reading list
• Field, A. (2014). Discovering statistics using IBM SPSS statistics. London: Sage.
Group 3
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 15.03. 16:45 - 18:15 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
- Wednesday 29.03. 16:45 - 18:15 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
- Wednesday 26.04. 16:45 - 18:15 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
- Wednesday 10.05. 16:45 - 18:15 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
- Wednesday 24.05. 16:45 - 18:15 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
- Wednesday 07.06. 16:45 - 18:15 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
- Wednesday 21.06. 16:45 - 18:15 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
Aims, contents and method of the course
Assessment and permitted materials
60% homework (25% for the first homework, 35% for the second homework)
40% participation in classesTo receive a positive grade, both homework assignments must be submitted and an average of 50% of the total points must be achieved.In case the semester will take place in the form of remote learning, content and aims of the course remain unchanged.The course will be taught in English. Assignments will be accepted in English and German.
Minimum requirements and assessment criteria
50.0 – 62.9% Sufficient
63.0 – 74.9% Satisfactory
75.0 – 86.9% Good
87.0 - 100% Excellent
Examination topics
- Interpretation of own and others’ results
- Descriptive Statistics
- Data handling
- Mean comparison (t-test)
- Chi-Square Test
- Correlation
- Simple and multiple linear regression
Reading list
Group 4
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 15.03. 15:00 - 16:30 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
- Wednesday 29.03. 15:00 - 16:30 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
- Wednesday 26.04. 15:00 - 16:30 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
- Wednesday 10.05. 15:00 - 16:30 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
- Wednesday 07.06. 15:00 - 16:30 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
- Wednesday 21.06. 15:00 - 16:30 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
Aims, contents and method of the course
Assessment and permitted materials
60% homework (25% for the first homework, 35% for the second homework)
40% participation in classesTo receive a positive grade, both homework assignments must be submitted and an average of 50% of the total points must be achieved.In case the semester will take place in the form of remote learning, content and aims of the course remain unchanged.The course will be taught in English. Assignments will be accepted in English and German.
Minimum requirements and assessment criteria
50.0 – 62.9% Sufficient
63.0 – 74.9% Satisfactory
75.0 – 86.9% Good
87.0 - 100% Excellent
Examination topics
- Interpretation of own and others’ results
- Descriptive Statistics
- Data handling
- Mean comparison (t-test)
- Chi-Square Test
- Correlation
- Simple and multiple linear regression
Reading list
Group 5
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 15.03. 16:45 - 18:15 Lehrredaktion Publizistik, Währinger Straße 29 2.OG
- Wednesday 29.03. 16:45 - 18:15 Lehrredaktion Publizistik, Währinger Straße 29 2.OG
- Wednesday 26.04. 16:45 - 18:15 Lehrredaktion Publizistik, Währinger Straße 29 2.OG
- Wednesday 10.05. 16:45 - 18:15 Lehrredaktion Publizistik, Währinger Straße 29 2.OG
- Wednesday 07.06. 16:45 - 18:15 Lehrredaktion Publizistik, Währinger Straße 29 2.OG
- Wednesday 21.06. 16:45 - 18:15 Lehrredaktion Publizistik, Währinger Straße 29 2.OG
Aims, contents and method of the course
Assessment and permitted materials
40% Participation in seminar
60% Two homework assignments (25% for the first home assignment, 35% for the second homework assignment)
To receive a positive grade, both homework assignments must be submitted and an average of 50% of the total points must be achieved.
Minimum requirements and assessment criteria
87.0 – 100% Excellent
75.0 – 86.9% Good
63.0 – 74.9% Satisfactory
50.0 – 62.9% Sufficient
00.0 – 49.9% Unsatisfactory
Reading list
Group 6
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 15.03. 15:00 - 16:30 Class Room 3 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-25
- Wednesday 29.03. 15:00 - 16:30 Class Room 3 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-25
- Wednesday 26.04. 15:00 - 16:30 Class Room 3 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-25
- Wednesday 10.05. 15:00 - 16:30 Class Room 3 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-25
- Wednesday 07.06. 15:00 - 16:30 Class Room 3 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-25
- Wednesday 21.06. 15:00 - 16:30 Class Room 3 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-25
Aims, contents and method of the course
Es wird dringend empfohlen, die dazugehörige Vorlesung zu besuchen.
Assessment and permitted materials
Minimum requirements and assessment criteria
Hausübung 1: 25 %
Hausübung 2: 35 %Für eine positive Note müssen beide Hausübungen abgegeben werden und im Durchschnitt 50 % der Gesamtpunkte erreicht werden (d.h. über beide Hausübungen hinweg 30 Punkte). Zudem muss die Mitarbeit als Teilleistung ebenfalls positiv sein, d.h. es müssen mindestens 20 Mitarbeitspunkte über das Semester hinweg gesammelt werden.Im Falle von digitaler bzw. hybrider Lehre bleiben die Anforderungen und der Beurteilungsmaßstab zu den Hausübungen und Mitarbeitsübungen unverändert.Notenschlüssel:
100 - 87,0 % Sehr Gut
86,9 - 75,0 % Gut
74,9 - 63,0 % Befriedigend
62,9 - 50,0 % Genügend
49,9 - 00,0 % Nicht Genügend
Reading list
Group 7
Lecturers
Classes (iCal) - next class is marked with N
We are planning to hold courses on-site to enable personal exchange between students and the teacher. However, due to COVID-19, we might have to switch to a digital format at short notice. Please regularly obtain information on u:find and check your e-mails.
- Tuesday 14.03. 15:00 - 16:30 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
- Tuesday 28.03. 15:00 - 16:30 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
- Tuesday 25.04. 15:00 - 16:30 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
- Tuesday 09.05. 15:00 - 16:30 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
- Tuesday 23.05. 15:00 - 16:30 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
- Tuesday 13.06. 15:00 - 16:30 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
- Tuesday 27.06. 15:00 - 16:30 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
Aims, contents and method of the course
• perform simple calculations and statistical analyses
• represent simple data in the appropriate graphical form
• interpret and critically evaluate statistical analyses and results
• communicate findings orally and in writing
• apply gained knowledge to conduct their own studies
Assessment and permitted materials
(2) Home Assignment 2 – 35%
(3) In-class Exercises – 20%
(4) In-class Discussion – 20%
Minimum requirements and assessment criteria
• basic math skills and not being afraid of maths and statistics
• basic computer skills and (preferably) the ability to install software
• ability to meet a set-in-stone deadline
• obligatory attendance (students are allowed to miss a maximum of one class)
• both home assignments must be submitted in order to complete the courseA = 1 (Very Good): 87 - 100%
B = 2 (Good): 75 - 86,99%
C = 3 (Satisfactory): 63 - 74,99%
D = 4 (Enough): 50 - 62,99%
F = 5 (Not Enough): 00 - 49,99%
Examination topics
- Interpretation of own and others’ results
- Descriptive Statistics
- Data handling
- Mean comparison (t-test)
- Chi-Squared Test
- Correlation
- Simple and multiple linear regression
Reading list
Software
• IBM SPSS Statistics (26 or 27)
Group 8
Lecturers
Classes (iCal) - next class is marked with N
ATTENTION: In this course, we will work with the statistical program SPSS for which a license will be provided to you. Since we are not in a computer room, students need to bring their own laptops to class.
Participation in the course is recommended for those who have already attended the corresponding lecture. While this is not mandatory, familiarity with the basic concepts is required. For those who still need to attend the lecture, study material for independent studies before class will be provided in time.- Thursday 30.03. 13:30 - 17:00 Seminarraum 6, Kolingasse 14-16, EG00
- Friday 31.03. 13:30 - 17:00 Seminarraum 6, Kolingasse 14-16, EG00
- Saturday 01.04. 13:30 - 17:00 Seminarraum 6, Kolingasse 14-16, EG00
Aims, contents and method of the course
Assessment and permitted materials
60% homework (25% for the first homework, 35% for the second homework)
40% participation in classesTo receive a positive grade, both homework assignments must be submitted and an average of 50% of the total points must be achieved.In case the semester will take place in the form of remote learning, content and aims of the course remain unchanged.The course will be taught in English. Assignments will be accepted in English and German.
Examination topics
- Interpretation of own and others’ results
- Descriptive Statistics
- Data handling
- Mean comparison (t-test)
- Chi-Square Test
- Correlation
- Simple and multiple linear regression
Reading list
Group 9
Lecturers
Classes (iCal) - next class is marked with N
- Monday 20.03. 09:45 - 11:15 Lehrredaktion Publizistik, Währinger Straße 29 2.OG
- Monday 17.04. 09:45 - 11:15 Lehrredaktion Publizistik, Währinger Straße 29 2.OG
- Monday 08.05. 09:45 - 11:15 Lehrredaktion Publizistik, Währinger Straße 29 2.OG
- Monday 22.05. 09:45 - 11:15 Lehrredaktion Publizistik, Währinger Straße 29 2.OG
- Monday 12.06. 09:45 - 11:15 Lehrredaktion Publizistik, Währinger Straße 29 2.OG
- Monday 26.06. 09:45 - 11:15 Lehrredaktion Publizistik, Währinger Straße 29 2.OG
Aims, contents and method of the course
Assessment and permitted materials
60% homework (25% for the first homework, 35% for the second homework)
40% participation in classesTo receive a positive grade, both homework assignments must be submitted and an average of 50% of the total points must be achieved. In addition, the cooperation as a partial performance must also be positive, i.e. at least 20 cooperation points must be accumulated over the semester. In case the semester will take place in the form of remote learning, content and aims of the course remain unchanged.
The course will be taught in German. Assignments will be accepted in English and German.
Minimum requirements and assessment criteria
50.0 – 62.9% Sufficient
63.0 – 74.9% Satisfactory
75.0 – 86.9% Good
87.0 - 100% Excellent
Examination topics
- Interpretation of own and others’ results
- Descriptive Statistics
- Data handling
- Mean comparison (t-test)
- Chi-Square Test
- Correlation
- Simple and multiple linear regression
Reading list
Group 10
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 29.03. 13:00 - 16:00 Lehrredaktion Publizistik, Währinger Straße 29 2.OG
- Wednesday 17.05. 13:00 - 16:00 Lehrredaktion Publizistik, Währinger Straße 29 2.OG
- Wednesday 28.06. 13:00 - 16:00 Lehrredaktion Publizistik, Währinger Straße 29 2.OG
Aims, contents and method of the course
Assessment and permitted materials
60% homework (25% for the first homework, 35% for the second homework)
40% participation in classesTo receive a positive grade, both homework assignments must be submitted and an average of 50% of the total points must be achieved.In case the semester will take place in the form of remote learning, content and aims of the course remain unchanged.The course will be taught in English. Assignments will be accepted in English and German.
Minimum requirements and assessment criteria
50.0 – 62.9% Sufficient
63.0 – 74.9% Satisfactory
75.0 – 86.9% Good
87.0 - 100% Excellent
Examination topics
- Interpretation of own and others’ results
- Descriptive Statistics
- Data handling
- Mean comparison (t-test)
- Chi-Square Test
- Correlation
- Simple and multiple linear regression
Reading list
Group 11
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 14.03. 09:45 - 11:15 PC-Raum 1 Schenkenstraße 8-10, 1.UG
- Tuesday 28.03. 09:45 - 11:15 PC-Raum 1 Schenkenstraße 8-10, 1.UG
- Tuesday 25.04. 09:45 - 11:15 PC-Raum 1 Schenkenstraße 8-10, 1.UG
- Tuesday 09.05. 09:45 - 11:15 PC-Raum 1 Schenkenstraße 8-10, 1.UG
- Tuesday 23.05. 09:45 - 11:15 PC-Raum 1 Schenkenstraße 8-10, 1.UG
- Tuesday 13.06. 09:45 - 11:15 PC-Raum 1 Schenkenstraße 8-10, 1.UG
- Tuesday 27.06. 09:45 - 11:15 PC-Raum 1 Schenkenstraße 8-10, 1.UG
Aims, contents and method of the course
Assessment and permitted materials
Minimum requirements and assessment criteria
HÜ1: 25 %
HÜ2: 35%
Für eine positive Note müssen beide Hausübungen abgegeben werden und im Durchschnitt 50% der Gesamtpunkte erreicht werden (d.h. über beide Hausübungen hinweg 30 Punkte). Zudem muss die Mitarbeit als Teilleistung ebenfalls positiv sein, d.h. es müssen mindestens 20 Mitarbeitspunkte über das Semester hinweg gesammelt werden. Die Hausübungen sind auf Deutsch zu verfassen.Im Falle von digitaler bzw. hybrider Lehre bleiben die Anforderungen und der Beurteilungsmaßstab zu den Hausübungen und Mitarbeitsübungen unverändert.Notenschlüssel:
00,0 - 49,9% Nicht Genügend
50,0 - 62,9% Genügend
63,0 - 74,9% Befriedigend
75,0 - 86,9% Gut
87,0 - 100% Sehr Gut
Examination topics
- Interpretation von eigenen und fremden Ergebnissen
- Deskriptive Statistik
- Umgang mit Daten
- Mittelwertvergleich (t-Test)
- Chi-Quadrat-Test
- Korrelation
- Einfache und mehrfache lineare Regression
Reading list
Group 12
Lecturers
Classes (iCal) - next class is marked with N
Die LV ist aktuell (Stand 19.01.2023) als Präsenz-LV geplant. Sollte eine Implementierung von hybrider/digitaler Lehre aufgrund triftiger Gründe nötig sein, werden sie rechtzeitig darüber informiert.
- Thursday 16.03. 13:15 - 14:45 PC-Raum 1 Schenkenstraße 8-10, 1.UG
- Thursday 30.03. 13:15 - 14:45 PC-Raum 1 Schenkenstraße 8-10, 1.UG
- Thursday 27.04. 13:15 - 14:45 PC-Raum 1 Schenkenstraße 8-10, 1.UG
- Thursday 11.05. 13:15 - 14:45 PC-Raum 1 Schenkenstraße 8-10, 1.UG
- Thursday 01.06. 13:15 - 14:45 Seminarraum 6 UniCampus Hof 7 Eingang 7.1 OG01 2H-O1-33
- Thursday 22.06. 13:15 - 14:45 Class Room 3 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-25
Aims, contents and method of the course
Minimum requirements and assessment criteria
2 Hausübungen:
Hausübung 1: 25 %
Hausübung 2: 35 %Für eine positive Note müssen beide Hausübungen abgegeben werden und im Durchschnitt 50% der Gesamtpunkte erreicht werden (d.h. über beide Hausübungen hinweg 30 Punkte). Zudem muss die Mitarbeit als Teilleistung ebenfalls positiv sein, d.h. es müssen mindestens 20 Mitarbeitspunkte über das Semester hinweg gesammelt werden.Im Falle von digitaler Lehre bzw. hybrider Lehre bleiben die Anforderungen und der Beurteilungsmaßstab zu den Hausübungen und zur Mitarbeit unverändert.Notenschlüssel:
100 - 87,0 % Sehr Gut
86,9 - 75,0 % Gut
74,9 - 63,0 % Befriedigend
62,9 - 50,0 % Genügend
49,9 - 00,0 % Nicht Genügend
Reading list
Group 13
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 14.03. 15:00 - 16:30 Class Room 3 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-25
- Tuesday 28.03. 15:00 - 16:30 Class Room 3 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-25
- Tuesday 25.04. 15:00 - 16:30 Class Room 3 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-25
- Tuesday 09.05. 15:00 - 16:30 Class Room 3 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-25
- Tuesday 23.05. 15:00 - 16:30 Class Room 3 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-25
- Tuesday 13.06. 15:00 - 16:30 Class Room 3 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-25
- Tuesday 27.06. 15:00 - 16:30 Class Room 3 ZID UniCampus Hof 7 Eingang 7.1 2H-O1-25
Aims, contents and method of the course
Assessment and permitted materials
60% homework (25% for the first homework, 35% for the second homework)
40% participation in classesTo receive a positive grade, both homework assignments must be submitted and an average of 50% of the total points must be achieved.The course will be taught in English. Assignments will be accepted in English and German.
Minimum requirements and assessment criteria
50.0 – 62.9% Sufficient
63.0 – 74.9% Satisfactory
75.0 – 86.9% Good
87.0 - 100% Excellent
Examination topics
- Interpretation of results
- Descriptive statistics
- Data handling
- Mean comparison (t-test)
- Chi-Square test
- Correlations
- Linear regression
Reading list
Group 14
Lecturers
Classes (iCal) - next class is marked with N
Ablauf
Tag 1: Einführung, Datenmanagement und Visualisierungen
Tag 2: Deskriptive Statistik und Theorie der Hypothesentestung. Statstische Tests: t-test und chi-Quadrat
Tag 3: Statstische Tests: Korrelation und Regressionsanalyse
Hausübung 1: 12. Juli 2023
Hausübung 2: 19. Juli 2023
- Friday 30.06. 11:30 - 14:30 Lehrredaktion Publizistik, Währinger Straße 29 2.OG
- Saturday 01.07. 11:30 - 14:30 Lehrredaktion Publizistik, Währinger Straße 29 2.OG
- Sunday 02.07. 11:30 - 14:30 Lehrredaktion Publizistik, Währinger Straße 29 2.OG
Aims, contents and method of the course
Assessment and permitted materials
60% homework (25% for the first homework, 35% for the second homework)
40% participation in classesTo receive a positive grade, both homework assignments must be submitted and an average of 50% of the total points must be achieved.In case the semester will take place in the form of remote learning, content and aims of the course remain unchanged.
Minimum requirements and assessment criteria
50.0 – 62.9% Sufficient
63.0 – 74.9% Satisfactory
75.0 – 86.9% Good
87.0 - 100% Excellent
Examination topics
- Interpretation of own and others’ results
- Descriptive Statistics
- Data handling
- Mean comparison (t-test)
- Chi-Square Test
- Correlation
- Simple and multiple linear regression