220076 VO VO Introduction to Data Analysis (2024W)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
max. 30 participants
Language: English
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 08.10. 09:45 - 11:15 Seminarraum 3, Währinger Straße 29 1.UG
- Tuesday 15.10. 09:45 - 11:15 Seminarraum 3, Währinger Straße 29 1.UG
- Tuesday 22.10. 09:45 - 11:15 Seminarraum 3, Währinger Straße 29 1.UG
- Tuesday 29.10. 09:45 - 11:15 Seminarraum 3, Währinger Straße 29 1.UG
- Tuesday 05.11. 09:45 - 11:15 Seminarraum 3, Währinger Straße 29 1.UG
- Tuesday 12.11. 09:45 - 11:15 Seminarraum 3, Währinger Straße 29 1.UG
- Tuesday 19.11. 09:45 - 11:15 Seminarraum 3, Währinger Straße 29 1.UG
- Tuesday 26.11. 09:45 - 11:15 Seminarraum 3, Währinger Straße 29 1.UG
- Tuesday 03.12. 09:45 - 11:15 Seminarraum 3, Währinger Straße 29 1.UG
- Tuesday 10.12. 09:45 - 11:15 Seminarraum 3, Währinger Straße 29 1.UG
- Tuesday 17.12. 09:45 - 11:15 Seminarraum 3, Währinger Straße 29 1.UG
- Tuesday 07.01. 09:45 - 11:15 Seminarraum 3, Währinger Straße 29 1.UG
- Tuesday 14.01. 09:45 - 11:15 Seminarraum 3, Währinger Straße 29 1.UG
- Tuesday 21.01. 09:45 - 11:15 Seminarraum 3, Währinger Straße 29 1.UG
- Tuesday 28.01. 09:45 - 11:15 Seminarraum 3, Währinger Straße 29 1.UG
Information
Aims, contents and method of the course
Assessment and permitted materials
Written exam
Minimum requirements and assessment criteria
Grading:
A = 1 (Very Good): 87 - 100%
B = 2 (Good): 75 - 86,99%
C = 3 (Satisfying): 63 - 74,99%
D = 4 (Sufficient): 50 - 62,99%
F = 5 (Not Sufficient): 00 - 49,99%
Class attendance is mandatory. You need to actively participate in at least 80% of the sessions.
A = 1 (Very Good): 87 - 100%
B = 2 (Good): 75 - 86,99%
C = 3 (Satisfying): 63 - 74,99%
D = 4 (Sufficient): 50 - 62,99%
F = 5 (Not Sufficient): 00 - 49,99%
Class attendance is mandatory. You need to actively participate in at least 80% of the sessions.
Examination topics
All contents discussed in the course and documented on Moodle.
Reading list
Llaudet, E. & Imai, K. (2023). Data Analysis for Social Science: A Friendly and Practical Introduction. Princeton University Press.
Ismay, C. & Kim, A. Y. (2020). Statistical Inference via Data Science: A Modern Dive into R and the Tidyverse. CRC Press.
More relevant literature will be announced in the syllabus.
Ismay, C. & Kim, A. Y. (2020). Statistical Inference via Data Science: A Modern Dive into R and the Tidyverse. CRC Press.
More relevant literature will be announced in the syllabus.
Association in the course directory
Last modified: Mo 30.09.2024 10:46
Attention: The courses VO Introduction to Data Analysis and UE Applied Data Analysis are linked.