230069 UE Specific Multivariate Methods of Analysis in the Social Sciences (2021S)
Continuous assessment of course work
Labels
REMOTE
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Tu 02.02.2021 00:01 to Mo 22.02.2021 09:00
- Registration is open from Th 25.02.2021 00:01 to Fr 26.02.2021 09:00
- Deregistration possible until Sa 20.03.2021 23:59
Details
max. 25 participants
Language: German
Lecturers
Classes (iCal) - next class is marked with N
- Monday 01.03. 16:45 - 18:15 Digital
- Monday 08.03. 16:45 - 18:15 Digital
- Monday 15.03. 16:45 - 18:15 Digital
- Monday 22.03. 16:45 - 18:15 Digital
- Monday 12.04. 16:45 - 18:15 Digital
- Monday 19.04. 16:45 - 18:15 Digital
- Monday 26.04. 16:45 - 18:15 Digital
- Monday 03.05. 16:45 - 18:15 Digital
- Monday 17.05. 16:45 - 18:15 Digital
- Monday 31.05. 16:45 - 18:15 Digital
- Monday 07.06. 16:45 - 18:15 Digital
- Monday 14.06. 16:45 - 18:15 Digital
- Monday 21.06. 16:45 - 18:15 Digital
- Monday 28.06. 16:45 - 18:15 Digital
Information
Aims, contents and method of the course
Assessment and permitted materials
zwei Übungsarbeiten über das Semester und Ausarbeitung und Verschriftlichung einer Analyse zu einer ausgewählten Fragestellung in Form einer abschließenden SeminararbeitHinweis der SPL:
Die Erbringung aller Teilleistungen ist Voraussetzung für eine positive Beurteilung, wenn nicht explizit etwas anderes vermerkt wurde.
Werden einzelne verpflichtende Teilleistungen nicht erbracht, gilt die Lehrveranstaltung als abgebrochen. Falls dem Nichterbringen der Leistung kein wichtiger und unvorhersehbarer Grund seitens des/der Studierenden vorliegt, wird die LV negativ beurteilt.
Bei Vorliegen eines solchen Grundes (zB eine längere Erkrankung) kann der/die Studierende auch nach Ablauf der Frist von der LV abgemeldet werden. Über das Vorliegen eines wichtigen Grundes entscheidet die Lehrveranstaltungsleitung. Der Antrag auf Abmeldung ist unverzüglich nach Eintreten des Grundes zu stellen.
Wurde eine Teilleistung erschlichen, d.h. etwa bei einer Prüfung oder einem Test geschummelt, bei einer schriftlichen Arbeit plagiiert oder auch Unterschriften auf Anwesenheitslisten gefälscht, wird die gesamte Lehrveranstaltung als "nicht beurteilt" gewertet und mit dem Vermerk "geschummelt/erschlichen" in das Notenerfassungssystem eingetragen.
Im Zuge der Beurteilung kann eine Plagiatssoftware (Turnitin in Moodle) zur Anwendung kommen: Details werden von den Lehrenden in der Lehrveranstaltung bekanntgeben.
Die Erbringung aller Teilleistungen ist Voraussetzung für eine positive Beurteilung, wenn nicht explizit etwas anderes vermerkt wurde.
Werden einzelne verpflichtende Teilleistungen nicht erbracht, gilt die Lehrveranstaltung als abgebrochen. Falls dem Nichterbringen der Leistung kein wichtiger und unvorhersehbarer Grund seitens des/der Studierenden vorliegt, wird die LV negativ beurteilt.
Bei Vorliegen eines solchen Grundes (zB eine längere Erkrankung) kann der/die Studierende auch nach Ablauf der Frist von der LV abgemeldet werden. Über das Vorliegen eines wichtigen Grundes entscheidet die Lehrveranstaltungsleitung. Der Antrag auf Abmeldung ist unverzüglich nach Eintreten des Grundes zu stellen.
Wurde eine Teilleistung erschlichen, d.h. etwa bei einer Prüfung oder einem Test geschummelt, bei einer schriftlichen Arbeit plagiiert oder auch Unterschriften auf Anwesenheitslisten gefälscht, wird die gesamte Lehrveranstaltung als "nicht beurteilt" gewertet und mit dem Vermerk "geschummelt/erschlichen" in das Notenerfassungssystem eingetragen.
Im Zuge der Beurteilung kann eine Plagiatssoftware (Turnitin in Moodle) zur Anwendung kommen: Details werden von den Lehrenden in der Lehrveranstaltung bekanntgeben.
Minimum requirements and assessment criteria
• Zwei Übungsaufgaben (Einzelarbeit, 60%)
• Schriftliche Ausarbeitung einer Analyse (Gruppenarbeit, 40 %)
• Anwesenheitspflicht, maximal zweimaliges Fehlen ist gestattet
• Schriftliche Ausarbeitung einer Analyse (Gruppenarbeit, 40 %)
• Anwesenheitspflicht, maximal zweimaliges Fehlen ist gestattet
Examination topics
Prüfungsstoff sind alle die in der Lehrveranstaltung erarbeiteten Verfahren der Regressionsanalyse und deren praktischen Anwendung mit der Statistiksoftware STATA. Dies umfasst die Prüfung der Voraussetzungen, Schätzung und inhaltliche Interpretation der Ergebnisse.
Reading list
Grundlagenliteratur
Kohler, U., & Kreuter, F. (2016). Datenanalyse mit Stata: allgemeine Konzepte der Datenanalyse und ihre praktische Anwendung. Walter de Gruyter GmbH & Co KG..Urban, D., & Mayerl, J. (2006). Regressionsanalyse: Theorie, Technik und Anwendung (Vol. 2). Wiesbaden: VS Verlag für Sozialwissenschaften.Daten
Jonas Beste, Corinna Frodermann (2019): Panel "Arbeitsmarkt und soziale Sicherung" (PASS), Campus File (PASS-CF_0617_v1), Version 1. FDZ-Datenreport, 08/2019 (de), Nürnberg. DOI: 10.5164/IAB.FDZD.1908.de.v1Weiterführend
Best, H., & Wolf, C. (2012). Modellvergleich und Ergebnisinterpretation in Logit-und Probit-Regressionen. KZfSS Kölner Zeitschrift für Soziologie und Sozialpsychologie, 64(2), 377-395.Mayerl, J., & Urban, D. (2019). Vorsicht (!) bei Regressionsanalysen mit Interaktionsvariablen. KZfSS Kölner Zeitschrift für Soziologie und Sozialpsychologie, 71(1), 135-156.Mood, C. (2010). Logistic regression: Why we cannot do what we think we can do, and what we can do about it. European sociological review, 26(1), 67-82.Angrist, J. D., & Pischke, J. S. (2008). Mostly harmless econometrics: An empiricist's companion. Princeton university press.
Kohler, U., & Kreuter, F. (2016). Datenanalyse mit Stata: allgemeine Konzepte der Datenanalyse und ihre praktische Anwendung. Walter de Gruyter GmbH & Co KG..Urban, D., & Mayerl, J. (2006). Regressionsanalyse: Theorie, Technik und Anwendung (Vol. 2). Wiesbaden: VS Verlag für Sozialwissenschaften.Daten
Jonas Beste, Corinna Frodermann (2019): Panel "Arbeitsmarkt und soziale Sicherung" (PASS), Campus File (PASS-CF_0617_v1), Version 1. FDZ-Datenreport, 08/2019 (de), Nürnberg. DOI: 10.5164/IAB.FDZD.1908.de.v1Weiterführend
Best, H., & Wolf, C. (2012). Modellvergleich und Ergebnisinterpretation in Logit-und Probit-Regressionen. KZfSS Kölner Zeitschrift für Soziologie und Sozialpsychologie, 64(2), 377-395.Mayerl, J., & Urban, D. (2019). Vorsicht (!) bei Regressionsanalysen mit Interaktionsvariablen. KZfSS Kölner Zeitschrift für Soziologie und Sozialpsychologie, 71(1), 135-156.Mood, C. (2010). Logistic regression: Why we cannot do what we think we can do, and what we can do about it. European sociological review, 26(1), 67-82.Angrist, J. D., & Pischke, J. S. (2008). Mostly harmless econometrics: An empiricist's companion. Princeton university press.
Association in the course directory
in 905: Ausschließlich für das Pflichtmodul MA M Methoden
Last modified: Fr 12.05.2023 00:20
Ziel der Lehrveranstaltung ist, dass die Teilnehmer und Teilnehmerinnen für eine Fragestellung das adäquate Analyseverfahren auswählen, umsetzen, Befunde interpretieren und kritisch hinterfragen können. Im Vordergrund steht daher neben den statistischen Grundlagen insbesondere die praktische Arbeit mit Daten des Panels Arbeitsmarkt- und soziale Sicherheit (PASS), mit dem ein frei verfügbares Campus File für die Lehre bereitsteht. In den Daten sind u.a. Informationen zu Lebenszufriedenheit, Einkommen, Armut, materieller Deprivation, Erwerbsbeteiligung, Familie und Haushaltskontext vorhanden, mit denen Analysen zu ausgewählten Fragestellungen durchgeführt werden können.Methode: In der Lehrveranstaltung werden hauptsächlich praktische Übungen am Rechner durchgeführt und punktuell durch Diskussion ergänzender Beispiele erweitert. Im digitalen Format werden Selbstlernprozesse durch wöchentliche digitale Sitzungen begleitet. In der Lehrveranstaltung wird mit der Statistiksoftware STATA gearbeitet, für die über die Universität Wien eine günstige Lizenz erworben werden kann. Eine Einführung in das Statistikprogramm ist Teil der Lehrveranstaltung. Vorkenntnisse im Umgang von Statistikprogrammen mit Syntax sind von Vorteil.