Warning! The directory is not yet complete and will be amended until the beginning of the term.
240053 SE BM8 Data Analysis (2025S)
Continuous assessment of course work
Labels
Anwesenheitspflicht in der ersten Einheit!
Die Lehrveranstaltungsleitung kann Studierende zu einem notenrelevanten Gespräch über erbrachte Teilleistungen einladen.
Plagiierte oder erschlichene Teilleistungen führen zur Nichtbewertung der Lehrveranstaltung (Eintragung eines 'X' im Sammelzeugnis). Es kommt die Plagiatssoftware Turnitin zum Einsatz.
Die Verwendung von KI-Tools (z. B. ChatGPT) zur Erbringung von Teilleistungen ist nur dann erlaubt, wenn dies von der Lehrveranstaltungsleitung ausdrücklich gefordert wird.
Die Lehrveranstaltungsleitung kann Studierende zu einem notenrelevanten Gespräch über erbrachte Teilleistungen einladen.
Plagiierte oder erschlichene Teilleistungen führen zur Nichtbewertung der Lehrveranstaltung (Eintragung eines 'X' im Sammelzeugnis). Es kommt die Plagiatssoftware Turnitin zum Einsatz.
Die Verwendung von KI-Tools (z. B. ChatGPT) zur Erbringung von Teilleistungen ist nur dann erlaubt, wenn dies von der Lehrveranstaltungsleitung ausdrücklich gefordert wird.
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Sa 01.02.2025 00:01 to Mo 24.02.2025 23:59
- Deregistration possible until Mo 17.03.2025 23:59
Details
max. 25 participants
Language: German
Lecturers
Classes (iCal) - next class is marked with N
- N Tuesday 04.03. 15:00 - 18:15 Hörsaal C, NIG 4. Stock
- Tuesday 11.03. 15:00 - 18:15 Hörsaal C, NIG 4. Stock
- Tuesday 25.03. 15:00 - 18:15 Hörsaal C, NIG 4. Stock
- Tuesday 01.04. 15:00 - 18:15 Hörsaal C, NIG 4. Stock
- Tuesday 29.04. 15:00 - 18:15 Hörsaal C, NIG 4. Stock
- Tuesday 13.05. 15:00 - 18:15 Hörsaal C, NIG 4. Stock
- Tuesday 27.05. 15:00 - 18:15 Hörsaal C, NIG 4. Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
- Regelmäßige Anwesenheit im Seminar: Von den 13 Lehrveranstaltungseinheiten darf max. 3 Einheiten (4,5 Stunden) gefehlt werden.
- Kontinuierliche Mitarbeit im Seminar
- Fristgerechte Abgabe der schriftlichen Arbeitsaufgaben während des Semesters
- Erstellung einer AbschlussarbeitZusätzliche Hinweise
Die Lehrveranstaltungsleitung kann Studierende zu einem notenrelevanten Gespräch über erbrachte Teilleistungen einladen. Plagiierte oder erschlichene Teilleistungen führen zur Nichtbewertung der Lehrveranstaltung (Eintragung eines 'X' im Sammelzeugnis). Es kommt die Plagiatssoftware (‘Turnitin') zum Einsatz.
Die Verwendung von KI-Tools (z. B. ChatGPT) zur Erbringung von Teilleistungen ist nur dann erlaubt, wenn dies von der Lehrveranstaltungsleitung ausdrücklich gefordert wird.
- Kontinuierliche Mitarbeit im Seminar
- Fristgerechte Abgabe der schriftlichen Arbeitsaufgaben während des Semesters
- Erstellung einer AbschlussarbeitZusätzliche Hinweise
Die Lehrveranstaltungsleitung kann Studierende zu einem notenrelevanten Gespräch über erbrachte Teilleistungen einladen. Plagiierte oder erschlichene Teilleistungen führen zur Nichtbewertung der Lehrveranstaltung (Eintragung eines 'X' im Sammelzeugnis). Es kommt die Plagiatssoftware (‘Turnitin') zum Einsatz.
Die Verwendung von KI-Tools (z. B. ChatGPT) zur Erbringung von Teilleistungen ist nur dann erlaubt, wenn dies von der Lehrveranstaltungsleitung ausdrücklich gefordert wird.
Minimum requirements and assessment criteria
Die Teilleistungen werden wie folgt gewichtet (Beurteilungsmaßstab in Klammern):
+ Mitarbeit (Feedback für Kolleg:innen, Reflexionsbereitschaft, etc.) (10 Punkte)
+ Kontinuierliche Erfüllung der geforderten Aufgaben während des Semesters – die Aufgaben orientieren sich an den Inhalten der Lehrveranstaltungseinheiten (30 Punkte)
+ Erstellung einer Abschlussarbeit laut Vorgaben – Präsentation der Auswertung und Interpretation eigenen Datenmaterials samt Reflexion (7-8 Seiten) (60 Punkte)Es wird nochmals explizit darauf hingewiesen, dass für eine positive Beurteilung alle Teilleistungen erbracht werden müssen.Benotungsspiegel:
91 - 100 Punkte = 1 (sehr gut)
81 - 90 Punkte = 2 (gut)
71 - 80 Punkte = 3 (befriedigend)
61 - 70 Punkte = 4 (genügend)
0 - 60 Punkte = 5 (nicht genügend)
+ Mitarbeit (Feedback für Kolleg:innen, Reflexionsbereitschaft, etc.) (10 Punkte)
+ Kontinuierliche Erfüllung der geforderten Aufgaben während des Semesters – die Aufgaben orientieren sich an den Inhalten der Lehrveranstaltungseinheiten (30 Punkte)
+ Erstellung einer Abschlussarbeit laut Vorgaben – Präsentation der Auswertung und Interpretation eigenen Datenmaterials samt Reflexion (7-8 Seiten) (60 Punkte)Es wird nochmals explizit darauf hingewiesen, dass für eine positive Beurteilung alle Teilleistungen erbracht werden müssen.Benotungsspiegel:
91 - 100 Punkte = 1 (sehr gut)
81 - 90 Punkte = 2 (gut)
71 - 80 Punkte = 3 (befriedigend)
61 - 70 Punkte = 4 (genügend)
0 - 60 Punkte = 5 (nicht genügend)
Examination topics
Prüfungsimmanente Lehrveranstaltung; es wird keine Prüfung geben.
Reading list
Bohnsack, Ralf (2011) Qualitative Bild- und Videointerpretation: die dokumentarische Methode. 2., durchgesehene und aktualisierte Auflage. Stuttgart: UTB GmbH.
Kuckartz, Udo, (2010) Einführung in die computergestützte Analyse qualitativer Daten. 3., aktualisierte Aufl. Wiesbaden : VS Verl. für Sozialwiss.
McCormack, Coralie (2000) From Interview Transcript to Interpretive Story: Part 1 - Viewing the Transcript through Multiple Lenses. In: Field methods, Vol.12 (4), p.282-297.
McCormack, Coralie (2000) From Interview Transcript to Interpretive Story: Part 2 - Developing an Interpretive Story. In: Field methods, Vol.12 (4), p.298-315.
Moritz, Christine und Michael Corsten [Hg.] (2018) Handbuch Qualitative Videoanalyse. Wiesbaden: Springer VS.
Rädiker, Stefan und Udo Kuckartz (2019) Analyse qualitativer Daten mit MAXQDA: Text, Audio und Video. Wiesbaden: Springer VS.
Zepke, Georg (2016) Lust auf qualitative Forschung! : eine Einführung für die Praxis. Wien: tso, Texte zur Systemischen Organisationsforschung.
Kuckartz, Udo, (2010) Einführung in die computergestützte Analyse qualitativer Daten. 3., aktualisierte Aufl. Wiesbaden : VS Verl. für Sozialwiss.
McCormack, Coralie (2000) From Interview Transcript to Interpretive Story: Part 1 - Viewing the Transcript through Multiple Lenses. In: Field methods, Vol.12 (4), p.282-297.
McCormack, Coralie (2000) From Interview Transcript to Interpretive Story: Part 2 - Developing an Interpretive Story. In: Field methods, Vol.12 (4), p.298-315.
Moritz, Christine und Michael Corsten [Hg.] (2018) Handbuch Qualitative Videoanalyse. Wiesbaden: Springer VS.
Rädiker, Stefan und Udo Kuckartz (2019) Analyse qualitativer Daten mit MAXQDA: Text, Audio und Video. Wiesbaden: Springer VS.
Zepke, Georg (2016) Lust auf qualitative Forschung! : eine Einführung für die Praxis. Wien: tso, Texte zur Systemischen Organisationsforschung.
Association in the course directory
Last modified: Tu 28.01.2025 12:06
Grundlegendes zur Datenauswertung
Kodieren – Ordnen – Interpretation von Datenmaterial
Ausarbeitung von Memos
Analyse von visuellem Material
Vorstellung der Computersoftware MAXQDA (oder Atlas.ti) zur qualitativen Datenanalyse
Von der Datenauswertung zur TextproduktionMethoden:
Der Schwerpunkt der Lehrveranstaltung liegt auf dem selbständigen Erproben von Auswertungsmethoden und ist daher stark auf Interaktion und Partizipation der Studierenden ausgerichtet. Die LV-Einheiten bestehen aus dem Input der LV-Leitung, vertiefenden Diskussionen der Pflichtliteratur und der selbständig erarbeiteten Aufgaben sowie interaktiven Übungen. Mittels kontinuierlicher Diskussionen und Feedbackschleifen durch die Lehrveranstaltungsleitung sowie die Studierenden untereinander werden die Inhalte und die eigenen Erfahrungen in den Präsenzeinheiten eingehend diskutiert und reflektiert.