Universität Wien

250001 VO Commutative algebra (2008W)

7.00 ECTS (4.00 SWS), SPL 25 - Mathematik

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 06.10. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
  • Wednesday 08.10. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
  • Monday 13.10. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
  • Wednesday 15.10. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
  • Monday 20.10. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
  • Wednesday 22.10. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
  • Monday 27.10. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
  • Wednesday 29.10. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
  • Monday 03.11. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
  • Wednesday 05.11. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
  • Monday 10.11. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
  • Wednesday 12.11. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
  • Monday 17.11. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
  • Wednesday 19.11. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
  • Monday 24.11. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
  • Wednesday 26.11. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
  • Monday 01.12. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
  • Wednesday 03.12. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
  • Wednesday 10.12. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
  • Monday 15.12. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
  • Wednesday 17.12. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
  • Wednesday 07.01. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
  • Monday 12.01. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
  • Wednesday 14.01. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
  • Monday 19.01. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
  • Wednesday 21.01. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
  • Monday 26.01. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
  • Wednesday 28.01. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II

Information

Aims, contents and method of the course

Commutative algebra studies commutative rings, their ideals, and modules over such rings.
It has a long and fascinating genesis, and it is also a fundamental basis
for algebraic geometry and algebraic number theory.
Topics are commutative rings (polynomial rings, rings of integers in number fields), Gröbner bases,
Buchberger's algorithm, noetherian rings, Artinian rings, Dedekind rings, dimension theory.

Assessment and permitted materials

written or oral exam, not before the end of the lecture

Minimum requirements and assessment criteria

Examination topics

Reading list

[AM] M.F. Atiyah, I.G. Macdonald, Introduction to commutative Algebra, 1969.
[BOU] N. Bourbaki, Commutative Algebra, 1989.
[EIS] D. Eisenbud, Commutative Algebra, 1995.
[MAT] H. Matsumura: Commutative Ring Theory, 1986.
[SAZ] P. Samuel, O. Zariski: Commutative Algebra, 1975.
[SHA] R. Y. Sharp: Steps in commutative algebra, 2000.

Association in the course directory

MALV

Last modified: Sa 02.04.2022 00:24