250001 VO Commutative algebra (2008W)
Labels
Details
Language: German
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Monday 06.10. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
- Wednesday 08.10. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
- Monday 13.10. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
- Wednesday 15.10. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
- Monday 20.10. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
- Wednesday 22.10. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
- Monday 27.10. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
- Wednesday 29.10. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
- Monday 03.11. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
- Wednesday 05.11. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
- Monday 10.11. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
- Wednesday 12.11. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
- Monday 17.11. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
- Wednesday 19.11. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
- Monday 24.11. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
- Wednesday 26.11. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
- Monday 01.12. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
- Wednesday 03.12. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
- Wednesday 10.12. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
- Monday 15.12. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
- Wednesday 17.12. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
- Wednesday 07.01. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
- Monday 12.01. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
- Wednesday 14.01. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
- Monday 19.01. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
- Wednesday 21.01. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
- Monday 26.01. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
- Wednesday 28.01. 10:00 - 12:00 Seminarraum 2A310 3.OG UZA II
Information
Aims, contents and method of the course
Assessment and permitted materials
written or oral exam, not before the end of the lecture
Minimum requirements and assessment criteria
Examination topics
Reading list
[AM] M.F. Atiyah, I.G. Macdonald, Introduction to commutative Algebra, 1969.
[BOU] N. Bourbaki, Commutative Algebra, 1989.
[EIS] D. Eisenbud, Commutative Algebra, 1995.
[MAT] H. Matsumura: Commutative Ring Theory, 1986.
[SAZ] P. Samuel, O. Zariski: Commutative Algebra, 1975.
[SHA] R. Y. Sharp: Steps in commutative algebra, 2000.
[BOU] N. Bourbaki, Commutative Algebra, 1989.
[EIS] D. Eisenbud, Commutative Algebra, 1995.
[MAT] H. Matsumura: Commutative Ring Theory, 1986.
[SAZ] P. Samuel, O. Zariski: Commutative Algebra, 1975.
[SHA] R. Y. Sharp: Steps in commutative algebra, 2000.
Association in the course directory
MALV
Last modified: Sa 02.04.2022 00:24
It has a long and fascinating genesis, and it is also a fundamental basis
for algebraic geometry and algebraic number theory.
Topics are commutative rings (polynomial rings, rings of integers in number fields), Gröbner bases,
Buchberger's algorithm, noetherian rings, Artinian rings, Dedekind rings, dimension theory.