250002 VU Numerische Methoden für Differentialgleichungen (2021S)
Continuous assessment of course work
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
- Registration is open from Mo 08.02.2021 00:00 to We 24.02.2021 23:59
- Deregistration possible until We 31.03.2021 23:59
Details
max. 25 participants
Language: German
Lecturers
Classes (iCal) - next class is marked with N
- Monday 01.03. 16:45 - 18:15 Digital
-
Wednesday
03.03.
16:45 - 18:15
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock - Monday 08.03. 16:45 - 18:15 Digital
-
Wednesday
10.03.
16:45 - 18:15
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock - Monday 15.03. 16:45 - 18:15 Digital
-
Wednesday
17.03.
16:45 - 18:15
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock - Monday 22.03. 16:45 - 18:15 Digital
-
Wednesday
24.03.
16:45 - 18:15
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock - Monday 12.04. 16:45 - 18:15 Digital
-
Wednesday
14.04.
16:45 - 18:15
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock - Monday 19.04. 16:45 - 18:15 Digital
-
Wednesday
21.04.
16:45 - 18:15
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock - Monday 26.04. 16:45 - 18:15 Digital
-
Wednesday
28.04.
16:45 - 18:15
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock - Monday 03.05. 16:45 - 18:15 Digital
-
Wednesday
05.05.
16:45 - 18:15
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock - Monday 10.05. 16:45 - 18:15 Digital
-
Wednesday
12.05.
16:45 - 18:15
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock - Monday 17.05. 16:45 - 18:15 Digital
-
Wednesday
19.05.
16:45 - 18:15
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock -
Wednesday
26.05.
16:45 - 18:15
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock - Monday 31.05. 16:45 - 18:15 Digital
-
Wednesday
02.06.
16:45 - 18:15
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock - Monday 07.06. 16:45 - 18:15 Digital
-
Wednesday
09.06.
16:45 - 18:15
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock - Monday 14.06. 16:45 - 18:15 Digital
-
Wednesday
16.06.
16:45 - 18:15
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock - Monday 21.06. 16:45 - 18:15 Digital
-
Wednesday
23.06.
16:45 - 18:15
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock - Monday 28.06. 16:45 - 18:15 Digital
-
Wednesday
30.06.
16:45 - 18:15
Digital
Hörsaal 11 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
Assessment and permitted materials
Grades will be based on an exam at the end of the semester, the number and quality of presented exercise problems, and the project, as well as participation during the course.
Minimum requirements and assessment criteria
This course conveys, by means of a lecture, exercise problems and a small project: basic knowledge on Differential equations, numerical methods for their solutions and elementary numerical analysis of such methods, numerical modeling.
Examination topics
The main part of this course will be given as a lecture. Additionally, exercise problems and projects will be presented by the students at some of the dates.
Reading list
lecture notes tailored for the course.additional reading (far beyond the contence of the course):Quarteroni, Sacco, Salieri: Numerical Mathematics, Springer, 2000 (Kap. 2, 11, 12).
Stoer, Bulirsch, Numerische Mathematik 2, Springer-Verl. 2005.
Rannacher, Rolf: Numerik 1: Numerik gewöhnlicher Differentialgleichungen, Heidelberg University Publishing, 2017 https://doi.org/10.17885/heiup.258.342.
Peter Deuflhard, Folkmar Bornemann, Numerische Mathematik 2: Gewöhnliche Differentialgleichungen, De Gruyter, 2008.
Stoer, Bulirsch, Numerische Mathematik 2, Springer-Verl. 2005.
Rannacher, Rolf: Numerik 1: Numerik gewöhnlicher Differentialgleichungen, Heidelberg University Publishing, 2017 https://doi.org/10.17885/heiup.258.342.
Peter Deuflhard, Folkmar Bornemann, Numerische Mathematik 2: Gewöhnliche Differentialgleichungen, De Gruyter, 2008.
Association in the course directory
WND
Last modified: Fr 12.05.2023 00:21
Basic concepts of numerics: machine arithmetics, condition, error propagation, ...
Basic notions of numerics for DE: stability, consistency, convergence, ...
Basic numerical methods for ordinary and partial DE:
Euler method explicit / implicit, Runge-Kutta, Multistep, Predictor-Corrector, Notions of solutions for DE (strong / weak solutions), Introduction to Partial differential equations, Finite Element Methods, Finite difference methods,
Spectral methods and basics of Fourier expansions,
„Numerical modeling“ with Differential equations.In the final weeks of the VU, a project example will be worked out and presented in small groups.