Universität Wien

250004 VO Number theory (2017S)

3.00 ECTS (2.00 SWS), SPL 25 - Mathematik

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Wednesday 01.03. 07:45 - 09:15 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 08.03. 07:45 - 09:15 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 15.03. 07:45 - 09:15 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 22.03. 07:45 - 09:15 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 29.03. 07:45 - 09:15 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 05.04. 07:45 - 09:15 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 26.04. 07:45 - 09:15 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 03.05. 07:45 - 09:15 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 10.05. 07:45 - 09:15 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 17.05. 07:45 - 09:15 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 24.05. 07:45 - 09:15 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 31.05. 07:45 - 09:15 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 07.06. 07:45 - 09:15 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 14.06. 07:45 - 09:15 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 21.06. 07:45 - 09:15 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
  • Wednesday 28.06. 07:45 - 09:15 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß

Information

Aims, contents and method of the course

This lecture will give an introduction to number theory. The material covered will include the following objects and their properties: divisor, prime number, gcd and lcm, Euclidean algorithm, congruences, solving linear congruences and systems of linear congruences, Chinese remainder theorem, Euler's totient function, Fermat's little theorem, residue class ring, units in residue class rings, law of quadratic reciprocity, continued fractions. For more information (in German) go to http://www.mat.univie.ac.at/~baxa/ss2017.html

Assessment and permitted materials

Written exam after the end of the semester. No aids are permitted. (This includes pocket calculators.)

Minimum requirements and assessment criteria

The grade is determined by the number of points achieved at the exam. To pass the exam at least half the points have to be achieved.

Examination topics

At the exam students have to demonstrate their command of the definitions, theorems and proofs presented in the lectures and their ability to apply the calculation techniques covered.

Reading list

P. Bundschuh, Einführung in die Zahlentheorie
G.H. Hardy, E.M. Wright, An Introduction to the Theory of Numbers
E. Hlawka, J. Schoißengeier, Zahlentheorie. Eine Einführung

Association in the course directory

ZTH; UFMA09

Last modified: Sa 19.10.2024 00:14