250007 VO An overview on algebra (2010W)
Labels
Details
Language: German
Examination dates
Lecturers
Classes (iCal) - next class is marked with N
- Thursday 07.10. 15:00 - 17:00 Seminarraum
- Friday 08.10. 14:00 - 16:00 Seminarraum
- Thursday 14.10. 15:00 - 17:00 Seminarraum
- Friday 15.10. 14:00 - 16:00 Seminarraum
- Thursday 21.10. 15:00 - 17:00 Seminarraum
- Friday 22.10. 14:00 - 16:00 Seminarraum
- Thursday 28.10. 15:00 - 17:00 Seminarraum
- Friday 29.10. 14:00 - 16:00 Seminarraum
- Thursday 04.11. 15:00 - 17:00 Seminarraum
- Friday 05.11. 14:00 - 16:00 Seminarraum
- Thursday 11.11. 15:00 - 17:00 Seminarraum
- Friday 12.11. 14:00 - 16:00 Seminarraum
- Thursday 18.11. 15:00 - 17:00 Seminarraum
- Friday 19.11. 14:00 - 16:00 Seminarraum
- Thursday 25.11. 15:00 - 17:00 Seminarraum
- Friday 26.11. 14:00 - 16:00 Seminarraum
- Thursday 02.12. 15:00 - 17:00 Seminarraum
- Friday 03.12. 14:00 - 16:00 Seminarraum
- Thursday 09.12. 15:00 - 17:00 Seminarraum
- Friday 10.12. 14:00 - 16:00 Seminarraum
- Thursday 16.12. 15:00 - 17:00 Seminarraum
- Friday 17.12. 14:00 - 16:00 Seminarraum
- Thursday 13.01. 15:00 - 17:00 Seminarraum
- Friday 14.01. 14:00 - 16:00 Seminarraum
- Thursday 20.01. 15:00 - 17:00 Seminarraum
- Friday 21.01. 14:00 - 16:00 Seminarraum
- Thursday 27.01. 15:00 - 17:00 Seminarraum
- Friday 28.01. 14:00 - 16:00 Seminarraum
Information
Aims, contents and method of the course
Assessment and permitted materials
Written exam or oral exam after the end of the lecture.
Minimum requirements and assessment criteria
Overview of algebraic methods in theory and applications
Examination topics
varying
Reading list
1. Janssen, T.
Crystallographic groups.
North-Holland Publishing Co., Amsterdam-London;
American Elsevier Publishing Co., Inc., New York, 1973.2. Cox, David; Little, John; O'Shea, Donal
Ideals, varieties, and algorithms.
An introduction to computational algebraic geometry and commutative algebra.
Third edition.
Undergraduate Texts in Mathematics. Springer, New York, 2007.3. Willems, Wolfgang
Codierungstheorie.
De Gruyter Lehrbuch. Berlin: de Gruyter, 250 p. (1999).
Crystallographic groups.
North-Holland Publishing Co., Amsterdam-London;
American Elsevier Publishing Co., Inc., New York, 1973.2. Cox, David; Little, John; O'Shea, Donal
Ideals, varieties, and algorithms.
An introduction to computational algebraic geometry and commutative algebra.
Third edition.
Undergraduate Texts in Mathematics. Springer, New York, 2007.3. Willems, Wolfgang
Codierungstheorie.
De Gruyter Lehrbuch. Berlin: de Gruyter, 250 p. (1999).
Association in the course directory
UEB
Last modified: Mo 07.09.2020 15:40
first part, ring-theoretic methods for the second part and field-theoretic methods
for the last part. All topics are well known examples for applications of algebra.
The first part, ALGEBRA AND SYMMETRY, deals with crystallographic groups. We first study
group actions and isometry groups of Euclidean spaces. Then we discuss the classification of
wallpaper groups, and more generally of crystallographic groups.
The second part, ALGEBRA AND EQUATIONS, deals with systems of polynomial equations, polynomial rings
in several variables , multivariate division dnd Gröbner bases. We present the Buchberger-
Algorithm for the computation of a Gröbner basis.
The third part, ALGEBRA AND CODING, deals with an introduction to coding theory.
This includes a short repretition of finite fields. We will discuss among other things
linear codes, Reed-Solomon codes, Hamming codes, Golay codes, BCH codes und classical
Goppa codes. Finally we may give an outlook on geometric Goppa codes, which can be constructed from
vector spaces of differentials of algebraic curves.