250007 VO Introduction to topology (2013S)
Labels
Details
Language: German
Examination dates
- Friday 14.06.2013
- Tuesday 25.06.2013
- Thursday 27.06.2013
- Monday 08.07.2013
- Wednesday 14.08.2013
- Monday 26.08.2013
- Tuesday 10.09.2013
- Friday 27.09.2013
- Friday 29.11.2013
- Friday 10.01.2014 16:00 - 18:00 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 03.02.2014
- Friday 28.02.2014
- Monday 10.03.2014
- Friday 25.04.2014
- Monday 01.09.2014
- Friday 14.11.2014
- Friday 08.05.2015
- Tuesday 12.04.2016
- Thursday 19.05.2016
- Thursday 23.02.2017
- Thursday 27.09.2018
- Wednesday 18.03.2020
Lecturers
Classes (iCal) - next class is marked with N
- Monday 04.03. 15:05 - 16:50 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Monday 18.03. 15:05 - 16:50 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Monday 08.04. 15:05 - 16:50 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Monday 15.04. 15:05 - 16:50 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Monday 22.04. 15:05 - 16:50 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Monday 29.04. 15:05 - 16:50 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Monday 06.05. 15:05 - 16:50 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Monday 13.05. 15:05 - 16:50 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Monday 27.05. 15:05 - 16:50 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Monday 03.06. 15:05 - 16:50 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Monday 10.06. 15:05 - 16:50 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Monday 17.06. 15:05 - 16:50 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Monday 24.06. 15:05 - 16:50 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
Information
Aims, contents and method of the course
review of metric spaces, topological spaces, neighborhoods and bases, continuity, connectedness, separation properties, countability properties, compactness, completeness and compactness in metric spacesLecture notes are available at http://www.mat.univie.ac.at/~gue/material.html
Assessment and permitted materials
oral or written exam (depending on the number of participants)
Minimum requirements and assessment criteria
Examination topics
definition, theorem, proof
Reading list
N. Bourbaki: Elements of mathematics. General topology. Part 1 and Part 2. Hermann 1966.R. Engelking: General Topology. Heldermann, revised edition 1989.L.A. Steen und J.A.. Seebach: Counterexamples in Topology. Springer, second edition 1978.S. Willard: General Topology. Addison-Wesley 1970.
Association in the course directory
HAN
Last modified: Sa 02.04.2022 00:24