250008 VO Number theory (2012S)
Labels
Details
Language: German
Examination dates
- Wednesday 27.06.2012
- Monday 02.07.2012
- Monday 09.07.2012
- Wednesday 01.08.2012
- Friday 28.09.2012
- Wednesday 07.11.2012
- Friday 07.12.2012
- Friday 25.01.2013
- Tuesday 12.02.2013
- Friday 22.03.2013
- Friday 22.03.2013
- Friday 17.05.2013
- Friday 17.05.2013
- Monday 01.07.2013
- Friday 19.07.2013
- Wednesday 25.09.2013
- Friday 29.11.2013
- Thursday 13.02.2014
- Friday 28.02.2014
- Friday 25.04.2014
Lecturers
Classes (iCal) - next class is marked with N
- Monday 05.03. 13:00 - 15:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Monday 19.03. 13:00 - 15:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Monday 26.03. 13:00 - 15:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Monday 16.04. 13:00 - 15:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Monday 23.04. 13:00 - 15:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Monday 30.04. 13:00 - 15:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Monday 07.05. 13:00 - 15:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Monday 14.05. 13:00 - 15:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Monday 21.05. 13:00 - 15:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Monday 04.06. 13:00 - 15:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Monday 11.06. 13:00 - 15:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Monday 18.06. 13:00 - 15:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
- Monday 25.06. 13:00 - 15:00 Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
Information
Aims, contents and method of the course
This lecture will give an introduction to number theory. The material covered will include the following objects and their properties: divisor, prime number, gcd and lcm, Euclidean algorithm, congruences, Chinese remainder theorem, Euler's totient function, Fermat's little theorem, law of quadratic reciprocity, continued fractions. For more information (in German) go to http://www.mat.univie.ac.at/~baxa/ss2012.html
Assessment and permitted materials
Written or oral exam after the end of the semester.
Minimum requirements and assessment criteria
We will give an introduction to the basic ideas and results of number theory.
Examination topics
The material will be presented by the lecturer.
Reading list
P. Bundschuh, Einführung in die Zahlentheorie
E. Hlawka, J. Schoißengeier, Zahlentheorie. Eine Einführung
E. Hlawka, J. Schoißengeier, Zahlentheorie. Eine Einführung
Association in the course directory
EAL, LA2
Last modified: Sa 02.04.2022 00:24