250008 VO Number theory (2012S)
Labels
Details
Language: German
Examination dates
Wednesday
27.06.2012
Monday
02.07.2012
Monday
09.07.2012
Wednesday
01.08.2012
Friday
28.09.2012
Wednesday
07.11.2012
Friday
07.12.2012
Friday
25.01.2013
Tuesday
12.02.2013
Friday
22.03.2013
Friday
22.03.2013
Friday
17.05.2013
Friday
17.05.2013
Monday
01.07.2013
Friday
19.07.2013
Wednesday
25.09.2013
Friday
29.11.2013
Thursday
13.02.2014
Friday
28.02.2014
Friday
25.04.2014
Lecturers
Classes (iCal) - next class is marked with N
Monday
05.03.
13:00 - 15:00
Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
Monday
19.03.
13:00 - 15:00
Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
Monday
26.03.
13:00 - 15:00
Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
Monday
16.04.
13:00 - 15:00
Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
Monday
23.04.
13:00 - 15:00
Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
Monday
30.04.
13:00 - 15:00
Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
Monday
07.05.
13:00 - 15:00
Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
Monday
14.05.
13:00 - 15:00
Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
Monday
21.05.
13:00 - 15:00
Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
Monday
04.06.
13:00 - 15:00
Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
Monday
11.06.
13:00 - 15:00
Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
Monday
18.06.
13:00 - 15:00
Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
Monday
25.06.
13:00 - 15:00
Hörsaal 3 2A211 2.OG UZA II Geo-Zentrum
Information
Aims, contents and method of the course
This lecture will give an introduction to number theory. The material covered will include the following objects and their properties: divisor, prime number, gcd and lcm, Euclidean algorithm, congruences, Chinese remainder theorem, Euler's totient function, Fermat's little theorem, law of quadratic reciprocity, continued fractions. For more information (in German) go to http://www.mat.univie.ac.at/~baxa/ss2012.html
Assessment and permitted materials
Written or oral exam after the end of the semester.
Minimum requirements and assessment criteria
We will give an introduction to the basic ideas and results of number theory.
Examination topics
The material will be presented by the lecturer.
Reading list
P. Bundschuh, Einführung in die Zahlentheorie
E. Hlawka, J. Schoißengeier, Zahlentheorie. Eine Einführung
E. Hlawka, J. Schoißengeier, Zahlentheorie. Eine Einführung
Association in the course directory
EAL, LA2
Last modified: Sa 02.04.2022 00:24