250012 VO Algebraic structures (2014W)
Labels
Details
Language: German
Examination dates
- Wednesday 03.12.2014
- Wednesday 21.01.2015
- Wednesday 21.01.2015 13:15 - 15:15 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 04.02.2015
- Thursday 26.02.2015 09:45 - 13:00 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Thursday 23.04.2015 13:45 - 16:30 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 27.05.2015 13:15 - 16:15 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Thursday 10.09.2015
- Wednesday 30.09.2015
- Saturday 28.11.2015 09:00 - 12:00 Hörsaal 1 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 13.01.2016
- Friday 01.04.2016
- Tuesday 14.06.2016
- Tuesday 12.07.2016
- Saturday 12.11.2016
- Saturday 14.01.2017
- Saturday 06.05.2017
Lecturers
Classes (iCal) - next class is marked with N
- Monday 06.10. 09:15 - 10:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 13.10. 09:15 - 10:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 20.10. 09:15 - 10:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 27.10. 09:15 - 10:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 03.11. 09:15 - 10:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 10.11. 09:15 - 10:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 17.11. 09:15 - 10:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 24.11. 09:15 - 10:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 01.12. 09:15 - 10:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 15.12. 09:15 - 10:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 12.01. 09:15 - 10:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 19.01. 09:15 - 10:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 26.01. 09:15 - 10:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
This lecture will give an introduction to abstract algebra. We will cover the following objects and their properties pertaining to group theory: normal subgroups and quotient groups, isomorphism theorems, Lagrange's theorem, cyclic groups, products of groups, permutation groups. We will cover the following objects and their properties pertaining to ring theory: characteristic and prime rings, ideals and factor rings, isomorphism theorems, direct sums and direct products, polynomial rings, principal ideal domains, euclidean rings, chinese remainder theorem for rings, integral domains and quotient fields, unique factorization domains, irreducibility criteria. For more information (in German) go to http://www.mat.univie.ac.at/~baxa/ws1415.html
Assessment and permitted materials
Written or oral exam after the end of the semester.
Minimum requirements and assessment criteria
We will give an introduction to the basic ideas and results of abstract algebra.
Examination topics
The material will be presented by the lecturer.
Reading list
G. Fischer, Lehrbuch der Algebra
T.W. Hungerford, Algebra
J.C. Jantzen, J. Schwermer, Algebra
S. Lang, Algebra
T.W. Hungerford, Algebra
J.C. Jantzen, J. Schwermer, Algebra
S. Lang, Algebra
Association in the course directory
EAL
Last modified: Mo 07.09.2020 15:40