Universität Wien

250012 VO Algebraic structures (2014W)

3.00 ECTS (2.00 SWS), SPL 25 - Mathematik

Details

Language: German

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

  • Monday 06.10. 09:15 - 10:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 13.10. 09:15 - 10:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 20.10. 09:15 - 10:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 27.10. 09:15 - 10:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 03.11. 09:15 - 10:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 10.11. 09:15 - 10:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 17.11. 09:15 - 10:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 24.11. 09:15 - 10:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 01.12. 09:15 - 10:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 15.12. 09:15 - 10:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 12.01. 09:15 - 10:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 19.01. 09:15 - 10:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
  • Monday 26.01. 09:15 - 10:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

This lecture will give an introduction to abstract algebra. We will cover the following objects and their properties pertaining to group theory: normal subgroups and quotient groups, isomorphism theorems, Lagrange's theorem, cyclic groups, products of groups, permutation groups. We will cover the following objects and their properties pertaining to ring theory: characteristic and prime rings, ideals and factor rings, isomorphism theorems, direct sums and direct products, polynomial rings, principal ideal domains, euclidean rings, chinese remainder theorem for rings, integral domains and quotient fields, unique factorization domains, irreducibility criteria. For more information (in German) go to http://www.mat.univie.ac.at/~baxa/ws1415.html

Assessment and permitted materials

Written or oral exam after the end of the semester.

Minimum requirements and assessment criteria

We will give an introduction to the basic ideas and results of abstract algebra.

Examination topics

The material will be presented by the lecturer.

Reading list

G. Fischer, Lehrbuch der Algebra
T.W. Hungerford, Algebra
J.C. Jantzen, J. Schwermer, Algebra
S. Lang, Algebra

Association in the course directory

EAL

Last modified: Mo 07.09.2020 15:40