250012 VO Discrete mathematics (2017S)
Labels
Details
Language: German
Examination dates
- Wednesday 28.06.2017 16:45 - 18:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 10.07.2017
- Wednesday 12.07.2017 13:15 - 15:15 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Wednesday 27.09.2017
- Wednesday 27.09.2017 13:15 - 15:15 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Monday 11.12.2017
- Monday 11.12.2017 17:45 - 20:00 Hörsaal 4 Oskar-Morgenstern-Platz 1 Erdgeschoß
- Thursday 21.12.2017
- Monday 22.01.2018 17:45 - 19:45 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Monday 17.12.2018
- Wednesday 04.09.2019
- Tuesday 04.08.2020
- Monday 02.11.2020
Lecturers
Classes (iCal) - next class is marked with N
- Tuesday 07.03. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 14.03. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 28.03. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 04.04. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 25.04. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 02.05. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 09.05. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 16.05. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 23.05. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 30.05. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 13.06. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 20.06. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
- Tuesday 27.06. 09:45 - 11:15 Hörsaal 13 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
The following material will be covered: Basic enumerative combinatorics, generating functions, the inclusion-exclusion principle, elementary graph theory, searching and sorting. Further information at http://www.mat.univie.ac.at/~schlosse/courses/DM/DM.html
Assessment and permitted materials
Written exam
Minimum requirements and assessment criteria
Introduction into basic concepts of Discrete Mathematics
Examination topics
For the exam you will have to know (as usual) definitions, mathematical tools and results (including technical constructions, theorems, etc.), proofs and contexts (including motivation of the material, explanation of principles). In addition, the mastery of the subject will be checked by posing suitable problems.
Reading list
Christian Krattenthaler & Markus Fulmek, Skriptum Diskrete Mathematik
Association in the course directory
DMA; UFMA09
Last modified: We 04.11.2020 00:29