Universität Wien

250013 VO Topics VO Geometry and Topology 2/3 (2020S)

3.00 ECTS (2.00 SWS), SPL 25 - Mathematik

Registration/Deregistration

Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).

Details

Language: English

Examination dates

Lecturers

Classes (iCal) - next class is marked with N

Course material including lecture notes and video lecture is on Moodle. E-mail me with questions, and if you need access.

  • Wednesday 04.03. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 11.03. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 18.03. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 25.03. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 01.04. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 22.04. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 29.04. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 06.05. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 13.05. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 20.05. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 27.05. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 03.06. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 10.06. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 17.06. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
  • Wednesday 24.06. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock

Information

Aims, contents and method of the course

UPDATE: Course material including lecture notes and video lectures and exercises is on Moodle. E-mail me with questions, and if you need access.

This course will be a basic introduction to differential topology, with an eye towards Morse theory. Topics include smooth manifolds and the tangent bundle, Sard's Lemma, Transversality, the Brower fixed point Theorem, Euler number, Poincare-Hopf theorem, and Morse theory.

Assessment and permitted materials

Written or oral exam after the end of the course.

Minimum requirements and assessment criteria

Basic prerequisites are the concepts of multivariable calculus, including differential forms, vector fields, and the implicit function theorem, as well as preferably the definitions of differentiable manifolds and tangent spaces.
In particular, the course is also suitable for advanced bachelor students.

Examination topics

The contents of the course.

Reading list

the course is based on the books:
-J. Milnor: Topology from the Differentiable Viewpoint
and
J. Milnor: Morse Theory

other useful books include:
-V. Guillemin, A. Pollack Differential Topology
-M. Hirsch Differential Topology
-T. Bröcker, K. Jänich Einführung in die Differentialtopologie
-A. Kosinski Differential Manifolds
-J. Lee Introduction to smooth manifolds

Association in the course directory

MGEV

Last modified: Th 18.02.2021 10:48