250013 VO Topics VO Geometry and Topology 2/3 (2020S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
- Wednesday 08.07.2020
- Tuesday 14.07.2020
- Thursday 16.07.2020
- Tuesday 28.07.2020
- Thursday 10.09.2020
- Monday 28.09.2020
- Thursday 01.10.2020
- Thursday 18.02.2021
Lecturers
Classes (iCal) - next class is marked with N
Course material including lecture notes and video lecture is on Moodle. E-mail me with questions, and if you need access.
- Wednesday 04.03. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 11.03. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 18.03. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 25.03. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 01.04. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 22.04. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 29.04. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 06.05. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 13.05. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 20.05. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 27.05. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 03.06. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 10.06. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 17.06. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 24.06. 09:45 - 11:15 Seminarraum 7 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
UPDATE: Course material including lecture notes and video lectures and exercises is on Moodle. E-mail me with questions, and if you need access.This course will be a basic introduction to differential topology, with an eye towards Morse theory. Topics include smooth manifolds and the tangent bundle, Sard's Lemma, Transversality, the Brower fixed point Theorem, Euler number, Poincare-Hopf theorem, and Morse theory.
Assessment and permitted materials
Written or oral exam after the end of the course.
Minimum requirements and assessment criteria
Basic prerequisites are the concepts of multivariable calculus, including differential forms, vector fields, and the implicit function theorem, as well as preferably the definitions of differentiable manifolds and tangent spaces.
In particular, the course is also suitable for advanced bachelor students.
In particular, the course is also suitable for advanced bachelor students.
Examination topics
The contents of the course.
Reading list
the course is based on the books:
-J. Milnor: Topology from the Differentiable Viewpoint
and
J. Milnor: Morse Theoryother useful books include:
-V. Guillemin, A. Pollack Differential Topology
-M. Hirsch Differential Topology
-T. Bröcker, K. Jänich Einführung in die Differentialtopologie
-A. Kosinski Differential Manifolds
-J. Lee Introduction to smooth manifolds
-J. Milnor: Topology from the Differentiable Viewpoint
and
J. Milnor: Morse Theoryother useful books include:
-V. Guillemin, A. Pollack Differential Topology
-M. Hirsch Differential Topology
-T. Bröcker, K. Jänich Einführung in die Differentialtopologie
-A. Kosinski Differential Manifolds
-J. Lee Introduction to smooth manifolds
Association in the course directory
MGEV
Last modified: Th 18.02.2021 10:48