250016 VO Mathematical Finance (Continuous Time) (2023S)
Labels
Registration/Deregistration
Note: The time of your registration within the registration period has no effect on the allocation of places (no first come, first served).
Details
Language: English
Examination dates
- Thursday 13.07.2023
- Friday 28.07.2023
- Tuesday 01.08.2023
- Wednesday 16.08.2023
- Monday 02.10.2023
- Thursday 11.01.2024
- Tuesday 13.02.2024
Lecturers
Classes (iCal) - next class is marked with N
- Wednesday 01.03. 13:15 - 14:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 02.03. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 08.03. 13:15 - 14:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 09.03. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 15.03. 13:15 - 14:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 16.03. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 22.03. 13:15 - 14:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 23.03. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 29.03. 13:15 - 14:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 30.03. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 19.04. 13:15 - 14:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 20.04. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 26.04. 13:15 - 14:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 27.04. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 03.05. 13:15 - 14:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 04.05. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 10.05. 13:15 - 14:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 11.05. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 17.05. 13:15 - 14:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 24.05. 13:15 - 14:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 25.05. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 31.05. 13:15 - 14:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 01.06. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 07.06. 13:15 - 14:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 14.06. 13:15 - 14:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 15.06. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 21.06. 13:15 - 14:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 22.06. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
- Wednesday 28.06. 13:15 - 14:00 Seminarraum 10 Oskar-Morgenstern-Platz 1 2.Stock
- Thursday 29.06. 11:30 - 13:00 Seminarraum 11 Oskar-Morgenstern-Platz 1 2.Stock
Information
Aims, contents and method of the course
* Fundamentals of continuous times processes relevant to finance: martingales, Brownian motion, geometric Brownian motion, stochastic integration, Ito formula, Ito processes, Girsanov theorem, martingale representation, etc.* Fundamental aspects of continuous time mathematical finance: trading, super/sub hedging, replication, pricing of options, martingale measures, no-arbitrage, the fundamental theorem of asset pricing, market completeness, Black-Scholes formula, hedging within the Black-Scholes model, exotic options, model calibration given option prices, etc. If time permits we will cover stochastic optimal control problems in finance, such as utility maximization.We will start the lecture with a brief introduction to discrete time stochastic processes and discrete time mathematical finance. Then we introduce the necessary machinery from continuous time stochastic processes. We apply this machinery towards building a continuous time theory of mathematical finance.
Assessment and permitted materials
Only a final exam. Depending on the size of the class, either oral or written (closed book) exam.
Minimum requirements and assessment criteria
Examination topics
The material from the lectures.
Reading list
For the elements of discrete time stochastic processes / mathematical finance, you may consult the Lecture Notes from Christa Cuchiero or Mathias Beiglböck (provided in the lecture) or the book 'Stochastic Finance' by Föllmer and Schied.For continuous time processes / finance, good references are 'Introduction to stochastic calculus applied to finance' by Lamberton and Lapeyre, 'Stochastic calculus for finance II: continuous-time modelr' by Shreve, or 'Arbitrage theory in continuous time' by Björk.
Association in the course directory
MSTV
Last modified: Tu 13.02.2024 15:06